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Abstract
In aqueous solutions containing electrolytes, ions influence both the solubility and the sta-
bility of biomolecules. However, inconsistencies across published data highlight the need 
for a critical review. To address this, a database was constructed on the solubility of glycine 
in electrolyte solutions spanning from 1996 to 2024, and the experimental data were criti-
cally evaluated. Gaussian Process (GP) models were implemented to analyze, predict, and 
validate solubility behavior. The GP model successfully captures salting-in and salting-out 
trends, along with specific ion effects reported in the literature. It also provides predictive 
uncertainty estimates that help identify potentially inconsistent data points or sets. This 
uncertainty-based analysis enables the reconciliation of conflicting datasets and helps pri-
oritize new experimental measurements in regions where data are sparse or less reliable. 
By applying a data-filtering method that removes experimental points falling outside the 
uncertainty range of the model, the influence of inconsistent values is reduced. This results 
in a more robust model fit and improved prediction accuracy. Therefore, the GP establishes 
a quantitative foundation for consolidating the current knowledge on the solubility of gly-
cine in saline solutions, identifying methodological inconsistencies in the literature.
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1  Introduction

Aqueous solutions containing electrolytes constitute the natural environment for many bio-
molecules, such as proteins, nucleic acids, and enzymes [1, 2]. These aqueous systems are 
fundamental for maintaining the three-dimensional structure of these molecules and their 
functionality [1]. Ions in solution can either stabilize or disrupt intermolecular interactions, 
thereby influencing molecular behavior [2–4]. As a result, electrolytes play a vital role in 
regulating the physicochemical properties of biomolecules and are involved in numerous 
biological processes [1, 2].

Current contributions to the knowledge of the solubility of amino acids in the presence 
of salts are extremely important in several aspects. From the biological point of view, it 
directly influences the stability of these molecules in aqueous medium [2, 5]. Such knowl-
edge is also essential in many industrial applications, especially in the food and pharma-
ceutical sectors, where product formulation requires precise control of the interactions 
between biomolecules and ions [2, 6].

Even though relevant data on the solubility of amino acids in aqueous electrolyte solu-
tions can be found, inconsistencies between the data are evident [5, 7], and there is a con-
siderable lack of information on aromatic amino acids or those with more than one amino 
or carboxylic acid group [2, 3, 8]. These limitations make it necessary to take a critical 
look and review the experimental approaches, checking for their reliability [5, 7]. The lack 
of consensus among the data highlights the importance of solving these evident inconsist-
encies [5, 7].

In this context, machine learning models emerge as a promising alternative for address-
ing the evaluation of the experimental data [9]. These models are capable of identifying 
patterns within dispersed and incomplete data sets, enhancing the interpretation of trends 
and enabling the analysis of inconsistencies [9]. Among the available approaches, Gaussian 
processes (GPs) stand out not only due to their ability to model a large volume of observed 
data but also due to their stochastic nature, i.e., their ability to provide a quantification 
of the uncertainty associated with their predictions [9]. This feature is especially valua-
ble for detecting inconsistencies between different experimental datasets, reinforcing the 
importance of critically assessing both the methodologies employed and the reliability of 
reported results [9]. Therefore, GP is a strategic tool for consolidating existing data and 
guiding future experimental validation efforts in a more rational way.

This study proposes a modeling framework based on GPs to analyze, predict, and vali-
date the solubility of glycine in aqueous solutions containing electrolytes, using an experi-
mental database compiled from multiple literature sources [1–8, 10–20]. The GP model 
enables the identification of inconsistencies among datasets, capturing salting-in/salting-
out phenomena and ion-specific effects. It provides an assessment of the uncertainty, help-
ing in the detection of data points deviating from expected trends. In this way, the GP offers 
a robust quantitative basis for validating existing data, resolving experimental inconsisten-
cies, and guiding the design of future experiments more assertively.
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2 � Methodology

The structuring of a database related to the solubility of amino acids in aqueous systems 
containing salts represented the initial and fundamental stage of this research, requiring 
careful analysis of each author and the respective data reported, especially in the meth-
odologies used, the results achieved, and their relative errors.

Solubility data collection was carried out for glycine in various electrolyte aqueous 
solutions to map and compare the different salt effects. To ensure the standardization of 
the experimental conditions, only studies carried out at a temperature of 298.2 K were 
selected. The database, organized in a spreadsheet, gathers salt molality, solubility, rela-
tive solubility, uncertainty, and temperature, in addition to the identification of the salt 
studied and the respective bibliographic reference. At the end of this stage, it was evi-
dent that many of the data collected presented inconsistencies in relation to the others, 
indicating the presence of possibly flawed or methodologically questionable experimen-
tal results, and it was necessary to perform a structural chemical analysis of each salt. 
The analysis is based on relative solubility, defined as the ratio of glycine solubility at 
a given salt concentration to its solubility in pure water reported by the same authors. 
This approach also minimizes the impact of variability in the solid crystal structure (α, 
β, or γ), which remains unidentified in most studies.

2.1 � Sigma Profiles

Sigma profiles are molecular descriptors derived from quantum chemistry (DFT) cal-
culations in which a molecule is placed in a continuum-solvent model and its screened 
surface charge density is computed. By partitioning the molecular surface into segments 
and constructing an unnormalized histogram of these local charge values, the sigma 
profile encodes the distribution of polarity, electron density, and solvation-relevant fea-
tures in a size-independent vector. This representation captures chemically meaningful 
information that is often inaccessible to descriptors based solely on atom types, connec-
tivity, or graph topology.

Abranches and co-workers [21] have shown that sigma profiles can function as uni-
versal molecular descriptors for machine learning workflows. Their studies demonstrate 
that models trained exclusively on sigma profiles are capable of predicting diverse phys-
icochemical properties such as boiling point, vapor pressure, density, and solubility, 
with excellent accuracy. Because sigma profiles compactly summarize rich electronic 
information while maintaining fixed dimensionality, they reduce the need for large data-
sets, simplify model architectures, and avoid the scaling issues typical of size-dependent 
descriptors.

To obtain sigma profiles in this work, each target ion was subjected to a DFT calculation 
in the software package TURBOMOLE [22], using the def-TZVP basis set and the BP-86 
functional, under the continuum-solvent model COSMO. This DFT calculation involves 
the geometry optimization of the ion in the COSMO solvation environment (with infinite 
permittivity), yielding the so-called sigma surface, a tessellated molecular surface with 
associated screened charge (surface charge density) on each surface patch. These calcula-
tions were complemented with basic structures from crystallographic data, ensuring accu-
racy through the comparison of experimental measurements. The basis set and functional 
chosen are the defaults used in COSMO-related calculations.
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Sigma surfaces are processed into sigma profiles by binning the surface patches accord-
ing to their local charge densities. The result is an unnormalized histogram (or distribution) 
of surface area vs. charge density across the molecular surface. In other words, sigma pro-
files indicate how much surface area of the molecule has a given range of screened charge. 
In this work, the conversion of sigma surfaces to sigma profiles was carried out using the 
software package COSMOtherm [23].

2.2 � Gaussian Process (GP)

A GP is a set of multivariate normal distributions capable of predicting values of an 
unknown function, being used as a nonparametric probabilistic model. A GP assumes 
that the values of the function follow a joint normal distribution and that the relationship 
between the points is described by a covariance function k

(
x, x′

)
 (kernel) and a mean func-

tion M(x).

That is, the values of the f (x) function are treated as random variables with joint normal 
distribution. For a set of N entry points, the joint distribution of the function values can be 
written as:

Therefore, � represents the vector of means and Σ is the covariance matrix constructed 
from the kernel between all pairs of points. When the GP is conditioned to the known data 
of the function y(x) , whether these are represented by y (training set), and the unknown val-
ues to be estimated represented by f∗ (test set at the points), it is possible to establish a joint 
normal distribution according to the following equation:

Therefore, for a given test point, the GP allows the predictive distribution of f*, condi-
tioned to the observed data y . This distribution is also Gaussian, with mean and variance 
updated according to the data.

This equation represents the prediction made by the GP, where �′ is the predicted mean 
and Σ� is the associated uncertainty. This characteristic makes Gaussian Processes espe-
cially valuable in problems where the estimation of uncertainty is crucial for a detailed 
analysis.
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The Python GPflow package (version 2.5.2) was the fundamental tool used to perform 
all GP-related calculations. The input (features) of the GP model trained in this work are 
the sigma profiles of each salt (SPsalt), obtained by summing the sigma profiles of each 
individual ion of the salt (SPcation and SPanion), followed by multiplying by its mole fraction 
in water (xsalt):

Because the sigma profiles obtained in this work range from − 0.062 e/Å2 to 0.062 e/Å2, 
in intervals of 0.001 e/Å2, SPsalt represents a vector of size 125. The output (labels) of the GP 
model are the relative solubility of glycine in the specific water/salt solution. Here, relative solu-
bility means the ratio between the solubility of glycine in the water/salt solution and the solubility 
of glycine in pure water.

The variables were normalized using methods based on logarithmic transformations fol-
lowed by standardization (normalization). For the independent variables, the Log  +  bStand 
transformation was applied, while for the dependent variable, the LogStand transformation 
was applied. In both cases, the resulting variables were rescaled to a range close to the 
standardized range with zero mean and unit standard deviation. In the GP model, the zero-
mean function was implemented, while the variance of the Gaussian probability function 
(likelihood) was initially set at a reduced value (10⁻3). The kernel parameters were adjusted 
by maximizing the marginal log-likelihood using the L-BFGS-B algorithm. In addition, a 
White kernel was used, which adds an overall estimate of the uncertainty associated with 
the data.

The datasets and Python code used in this work are freely available in the following 
GitHub repository: https://​github.​com/​dinis​Abran​ches/​Glyci​ne_​GPs.

3 � Results and Discussion

To enable a thorough analysis of glycine solubility in the presence of different electrolytes, 
the database was developed to cover the widest possible variety of salts. This diversity 
facilitates a more comprehensive analysis about the influence of both cations and anions on 
solubility trends. The dataset encompasses a wide array of anions (F−, Cl−, Br−, I−, NO₃−, 
SCN−, CH₃COO−, and SO₄2−) and cations (Na⁺, K⁺, NH₄⁺, Ba2⁺, Ca2⁺, and Mg2⁺). This 
ensures the analysis is broad, allowing for detailed insights into the chemical interactions 
governing the solubility of amino acids in saline environments.

3.1 � Dataset

Our dataset, available in the repository associated with this work, contains the solubility 
of glycine in aqueous solutions of different salts, as a function of salt concentration. The 
dataset contains a total of 262 entries. With the database systematically organized, the dis-
tribution of collected data for each salt investigated can be clearly visualized in Fig. 1. It 
presents the amount of data available for each salt and an overview of the number of dif-
ferent datasets within a given salt. The dataset also contains information on the reported 
experimental uncertainty of each data point, which is used to produce experimental error 
bars throughout this manuscript.

(7)SPsalt = xsalt
(
SPcation + SPanion

)

https://github.com/dinisAbranches/Glycine_GPs
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For the construction of the GP model, it was necessary to calculate the sigma profiles of 
the ions included in the database. These sigma profiles, obtained as explained in Sect. 2.1, 
allowed us to define the molecular structures of the salts and to distinguish each system 
within the model. By considering the sigma profiles of both cations and anions, the GP can 
account for ion-specific effects, giving a more faithful description of the different physico-
chemical behaviors associated with each salt. This approach also supports more reliable 
predictions of the systems under study. Figure 2 presents the calculated sigma profiles for 
the cations (top) and anions (bottom) that constitute the investigated salts.

To provide a comprehensive overview, a global evaluation of the model’s performance 
was conducted. Specifically, as illustrated in Fig.  3, the experimental relative solubility 
values (S/S0) are compared with the corresponding predictions by the GP model, which 
indicates a good predictive capacity of the model. In this case, most of the data points clus-
ter around the diagonal line, indicating a satisfactory performance of the GP model. This 
statement is supported by the coefficient of determination (R2  =  0.750), which confirms 
that the model captures the experimental data trends with reasonable accuracy, even con-
sidering the diversity of salts included in the database.

As can be seen in Fig. 4, a detailed analysis of the data reveals that, for salt systems with 
data reported by multiple authors, there is a lack of consensus regarding their effect on 
glycine solubility. This variability underscores the importance of applying the GP model to 
evaluate and validate the data. Such an approach enables the identification of inconsisten-
cies and contributes to enhancing the overall reliability of the dataset.

For the aqueous solution containing KNO3 (Fig. 4A) or NaNO3 (Fig. 4C), it is observed 
that the results reported by Pradhan and Vera [4] present relative solubility values signifi-
cantly higher than those of the other authors. This discrepancy suggests that methodologi-
cal differences or specific experimental conditions may have influenced the results, causing 
them to deviate from the general trend observed in the other datasets.

For the KCl and NaCl systems (Figs. 4B and D), Khoshkbarchi and Vera [11] report a 
salting-out effect at low salt mole fractions for KCl, whereas Ferreira et al. [7] and Aliyeva 

Fig. 1   Experimental data points (numbers) and datasets (different colors) collected for the salt effect on the 
solubility of glycine in aqueous solutions at 298.2 K
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[1] report the opposite salting-in effect. For NaCl, Carta and Tola [8] present only two val-
ues that deviate from the trend shown by the other authors.

In the case of Na2SO4 (Fig. 4E), there is a good general agreement among most authors, 
except for El-Dossoki’s data [3], which present higher values of relative solubility through-
out the concentration range. As a last example, for CaCl2 (Fig. 4F), Aliyeva et al. [5] report 
a clear, near-linear increase in relative solubility with salt mole fraction, whereas El-Dos-
soki [3] observes only a slight increase across the measured range.

The combined global and individual analyses of the experimental data enabled the iden-
tification of both consistent patterns and discrepancies among datasets for each salt studied. 
Understanding these variations is crucial for the proper curation of the database and for 
the development of reliable predictive models. This approach reinforces the usefulness of 
the GP as a tool for assessing the reliability of experimental results and revealing potential 
methodological biases or variations in measurement conditions. It further emphasizes the 

Fig. 2   Calculated sigma profiles for cations (top) and anions (bottom) forming the salts of the studied data-
base, obtained from COSMO-RS surface charge density distributions
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importance of implementing models capable of identifying which data are closest to the 
expected behavior.

3.2 � GP Regression

The development of the GP model implies establishing a nonlinear and probabilistic rela-
tionship between the physicochemical description of the system and the relative solubil-
ity of glycine. To this end, the input independent variables were defined as the product 
between the mole fraction of the salt and its sigma profile, a parameter that describes the 
distribution of molecular charge density. The relative solubility of glycine was used as the 
dependent variable.

The output variable of the model corresponds to the relative solubility predicted by the 
GP model. As the data are sequentially introduced from the database, the model dynami-
cally updates its predictions, estimating the expected values for each combination of mole 
fraction and sigma profile. In addition to point predictions, the GP model provides a con-
fidence interval for each estimate, allowing not only to assess global and individual trends, 
but also to assess the uncertainty associated with the results quantitatively. This feature is 
fundamental for interpreting the results, as it facilitates direct comparison between the GP 
predictions and the experimental values.

An analysis of the model output for the KNO3 containing system (Fig. 5A) reveals that 
the prediction curve (red line) captures the overall trend of the experimental data, illustrat-
ing an increase in the relative solubility of glycine with increasing mole fraction of the salt. 
However, the shaded region, which represents the model confidence interval, indicates that 
a substantial portion of the experimental points lie outside this interval, with only a limited 
number falling within the predicted uncertainty bounds and discarding most of the data. 
The results reported by Pradhan and Vera [4] predominantly fall outside, presenting the 
larger distances to the uncertainty range predicted by the GP model, suggesting that these 
measurements are inconsistent with the expected pattern for the relative solubility of gly-
cine in this system. A similar situation occurs in the systems containing NaNO3 (Fig. 5C).

Fig. 3   Comparison between 
experimental (Exp. S/S0) and 
predicted (Pred. S/S0) relative 
solubility values for glycine in 
salt aqueous solutions at 298.2 K, 
using the GP model
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In stark contrast, the systems containing KCl and NaCl (Figs.  5B and D) exhibit 
markedly different behavior from the nitrates. One of the key findings in these cases is 
the presence of distinct salting-in and salting-out effects in the dilute solutions, which 
introduces significant variability into the data. Despite the relative proximity of the 
experimental values, this variability leads to broader uncertainty intervals in the GP 
predictions, wide enough that most data points fall within the model’s confidence lim-
its. Specifically, for the NaCl system, the data reported by Aliyeva [1] and Carta and 
Tola [8] include several values, particularly at higher mole fractions, that fall outside 
the model’s predicted uncertainty range. This suggests that portions of these datasets 
may be inconsistent with the expected solubility behavior. Moreover, none of the data-
sets examined align well with the trend predicted by the GP model, reinforcing the need 
for a more critical assessment of the experimental methodologies and conditions used in 
this system.

Fig. 4   Experimental relative solubility of glycine in KNO3 (A), KCl (B), NaNO3 (C), NaCl (D), Na2SO4 
(E), CaCl2 (F) aqueous solutions at 298.2 K, from different authors
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For the Na2SO4  containing system (Fig. 5E), the model predicts a moderate and con-
tinuous increase in the relative solubility of glycine with increasing salt mole fraction. The 
uncertainty region encompasses many data points, as three independent studies report val-
ues within a similar range. However, the dataset from El-Dossoki [12] reports significantly 
higher values than the others, particularly at higher salt concentrations. This discrepancy 
contributes to an expanded uncertainty interval and results in a more noticeable deviation 
between the model prediction and the remaining experimental data at higher mole frac-
tions. Among the sets evaluated, only the data from Ferreira et al. [7] are fully within the 
model’s uncertainty region, being most consistent with the predicted trend.

As a final remark, for the CaCl2 system (Fig.  5F), the GP model predicts a smooth 
increase in the relative solubility of glycine with rising salt mole fraction. The uncertainty 
band covers most measurements at low to intermediate mole fractions, particularly those 
from El-Dossoki [3], which cluster around the prediction. In contrast, the values reported 

Fig. 5   GP model prediction (red line) for the relative solubility of glycine in KNO3 (A), KCl (B), NaNO3 
(C), NaCl (D), Na2SO4 (E), CaCl2 (F) aqueous solutions at 298.2 K, and the associated prediction uncer-
tainty
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by Aliyeva et al. [5] tend to lie above the trend, and the highest concentration point clearly 
falls outside the uncertainty region, yielding the largest deviation. The model captures the 
global tendency, but the high-concentration behavior remains weakly constrained due to 
sparse and inconsistent data within the sampled range. For this system, El-Dossoki’s meas-
urements are the most consistent with the predicted trend.

Overall, the predictions of the GP model effectively captured the trends in the relative 
solubility of glycine across the various saline systems, even in cases where discrepancies 
existed among experimental datasets. The model showed sensitivity to the individual con-
tributions of the constituent ions of each salt, reflecting their influence on solubility behav-
ior. This allowed for the identification of consistent patterns among systems containing 
common ions, further reinforcing the model’s capacity to reveal underlying physicochemi-
cal relationships. Considering the other systems in the database, a similar analysis can be 
carried out by observing Section I: Figures in the supporting information.

Analysis of the results indicates that the model adapts its predictive behavior to align 
with the observed trends. However, a further refinement is needed to improve its ability 
to distinguish which data points are most consistent with the predicted values. In addition, 
the assessment of predictive uncertainties helps identify regions of greater reliability, guid-
ing the selection of new experimental points to determine and improve the model, thereby 
increasing the accuracy of the predictions.

3.3 � GP Meta‑Analysis

The implementation of the data-filtering strategy, removing the experimental points that 
are outside the uncertainty bounds of the predictions, emerges as a promising approach to 
improve the GP model performance. This method reduces the impact of potentially incon-
sistent data, enabling a more accurate and robust fit. By delimiting the data that present 
better agreement with the predicted behavior, the model can refine its parameters more 
effectively, thereby improving both its predictive accuracy and the overall reliability of the 
results. Figure 6 illustrates the workflow proposed for this modeling approach.

The workflow follows a simple, iterative cycle: first, the model is trained with the initial 
dataset; next, the predictions of relative solubility and the respective uncertainty are com-
puted for each salt; then, these predictions are compared with the corresponding experi-
mental measurements at each salt mole fraction; finally, any points falling clearly outside 
the uncertainty range of the model are excluded from subsequent training iterations. The 
procedure is applied to all systems in a synchronized manner: at each iteration, all incon-
sistent points are removed from each system, ensuring balance and preventing favoritism. 
In this way, outliers from one system do not affect the others.

It is important to note that the filtering procedure was applied using a 99.5% confidence 
interval. No experimental data points are permanently removed from the database. Instead, 
the exclusions are made only in a copy of the dataset used for model predictions. In the 
Figures, points excluded from new GP predictions and calculations are marked with a red 
circle, clearly indicating that they were filtered out. This iterative filtering process con-
tributes to greater model stability, improved predictive accuracy, and increased confidence 
in the results, while ensuring that the data selection remains traceable and scientifically 
robust.

By applying the iterative filtering method, the GP model was able to identify 
inconsistent points within the dataset. A detailed account of the number of excluded 
data points for each system is provided in the Supporting Information (Table  S1). 
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Furthermore, Fig. 7 illustrates the systems after the application of the filtering proce-
dure, highlighting the improvement in model consistency once the inconsistent data 
points are removed from the GP predictions.

When analyzing the behavior of the model for the KNO3 (Fig.  7A) and NaNO3 
(Fig. 7C) systems, it is observed that, after applying the iterative filtering procedure, the 
results of Roy et al. [15] consistently showed the highest agreement with the GP predic-
tions. In both systems, the narrowing of the uncertainty interval reinforces the quality 
of the fit and the high predictive confidence of the model. For Pradhan and Vera [4], 
the results at lower mole fractions were considered consistent with the model, while the 
higher values were excluded during the filtering process. The data of Aliyeva [1] were 
also found to be consistent overall, with only the final value for the NaNO3 system being 
disregarded after the iterative filtering.

In the evaluation of the GP model applied to the KCl (Fig.  7B) and NaCl (Fig.  7D) 
systems, it is observed that most of the experimental data reported by different authors are 
consistent with the predictions. For KCl, the model tends to follow more closely the results 
of Khoshkbarchi and Vera [11] at lower mole fractions, while the data of Ferreira et al. [7] 
become more consistent as the mole fraction increases. In contrast, for NaCl, the predic-
tions are predominantly aligned with Khoshkbarchi and Vera [11], and only the final points 

Fig. 6   A data-filtering workflow 
for training GPs to describe the 
relative solubility of glycine in 
different salt solutions
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of Carta and Tola [8] and Aliyeva [1] were excluded by the uncertainty criterion, leading to 
greater dispersion of the model and broader uncertainty at higher concentrations.

For the Na2SO4 system (Fig. 7E), the results of El-Dossoki [3] showed some inconsist-
encies at higher mole fractions, whereas the data reported by Ferreira et al. [7], Ramasami 
[19], and Roy et al. [12] remained consistent with the predictions of the GP model across 
the evaluated range. However, among these authors, it is not evident which dataset aligns 
most closely with the model predictions.

Finally, for the CaCl2 system (Fig. 7F), the GP predictions indicate that the expected 
effect is a slight increase in relative solubility with increasing mole fraction. This outcome 
contrasts with the experimental results of both El-Dossoki [3] and Aliyeva et al. [5], whose 
reported trends at higher concentrations are inconsistent with the model, leading to the 
removal of these points during filtering.

Fig. 7   GP prediction of glycine relative solubility in KNO3 (A), KCl (B), NaNO3 (C), NaCl (D), Na2SO4 
(E), CaCl2 (F) aqueous solutions at 298.2 K, with uncertainty bands after iterative removal of points out-
side the uncertainty interval
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After applying the iterative filtering of inconsistent data, the uncertainty regions are sig-
nificantly reduced, and the datasets reported by different authors become more coherent 
with each other. This process allows the model to emphasize which points are truly consist-
ent, resulting in greater stability and improved predictive accuracy. Figure 8 illustrates this 
step-by-step filtering procedure for the KNO3 system, showing how the progressive exclu-
sion of inconsistent values strengthens the reliability of the model outcomes.

From Fig.  8A, B, corresponding to the first iteration, the GP model already shows a 
noticeable reduction in the uncertainty band. Two points from Pradhan and Vera [4], 
located outside the confidence interval, are removed, which increases the precision of the 
prediction. At this stage, the datasets of Aliyeva [1] and Roy et  al. [15] become clearly 
aligned with the model trend, reinforcing their consistency. In the subsequent steps 
(Figs. 8C and D), corresponding to iterations 2 and 3, additional points from Pradhan and 
Vera [4] are progressively removed. This indicates that, for the most part, their reported 

Fig. 8   Stepwise iterative filtering of inconsistent experimental data in the KNO3 aqueous system at 
298.2 K, using the GP model (confidence interval of 99.5%)
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results diverge from the predicted behavior. Meanwhile, the uncertainty interval gradually 
adjusts around the datasets of Aliyeva [1] and Roy et al. [15], as well as the low mole frac-
tion values of Pradhan and Vera [4], which remain consistent with the GP predictions. Dur-
ing the final stages (Figs. 8E and F), only minor refinements occur, with a slight narrowing 
of the uncertainty band. This confirms the stability of the model and the consistency of the 
results reported by Aliyeva [1] and Roy et al. [15]. By the fifth iteration, all inconsistent 
points have been filtered out based on the 99.5% confidence criterion, leaving only the data 
that best represent the expected solubility trend for glycine in the KNO3 system.

Therefore, we can conclude that the application of the iterative method of filtering by 
the uncertainty area proved to be effective in making the GP model more reliable and accu-
rate. By removing the datapoints lying outside the bands, it reduces the influence of incon-
sistent results between authors and stabilizes the model adjustment process, allowing the 
GP to clearly identify the data set that is most consistent with their predictions, resulting in 
a model with minimal uncertainty areas and improved prediction. In addition, data filtering 
highlights the need to verify potentially inconsistent data and guides new studies in regions 
of greater uncertainty.

4 � Conclusions

This research demonstrated that, even when starting from a database with inconsistencies 
and contradictory results between different saline solutions, the GP model allowed us to 
quantify and interpret the specific influence of cations and anions on the relative solubility 
of glycine in aqueous solutions. Despite these adversities, the GP adequately reproduced 
the main experimental behaviors and identified which datasets are most consistent.

The proposed meta-analysis, based on iterative filtering of points outside the uncertainty 
area of the model itself, proved to be crucial to improve the predictive capacity and iden-
tify inconsistencies. This procedure narrowed the area of uncertainty and highlighted the 
data most compatible with the model, without definitively removing the results from the 
database. As a result, the GP has become more stable, predictive, and reliable to support 
conclusions and guide new studies.

It is therefore concluded that the GP, when properly modeled and continuously 
improved by methods sensitive to uncertainty and data quality, helps the validation of dif-
ferent databases, even in the presence of inconsistencies. The model quantifies the con-
fidence in measurements, anticipates the different effects on the systems, and accurately 
locates inconsistent data and poorly sampled regions. Our GP-based methodology also 
offers practical guidance for future experimental work. By quantifying predictive uncer-
tainty across salts and compositions, the model highlights regions where existing solu-
bility data are sparse, inconsistent, or otherwise unreliable. These high-uncertainty areas 
represent the most valuable targets for new measurements, enabling experimental efforts 
to focus on conditions where additional data would substantially improve confidence in 
the solubility surface. Conversely, regions with low uncertainty correspond to well-sup-
ported measurements that are unlikely to benefit from further experimentation. Thus, the 
approach provides a systematic way to prioritize remeasurement and to allocate experimen-
tal resources more efficiently.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10953-​026-​01561-9.

https://doi.org/10.1007/s10953-026-01561-9
https://doi.org/10.1007/s10953-026-01561-9


	 Journal of Solution Chemistry

Acknowledgements  This work was developed within the scope of the project CIMO-Centro de Investigação 
de Montanha, UIDB/00690/2020 (https://​doi.​org/​10.​54499/​UIDB/​00690/​2020), UIDP/00690/2020 (https://​
doi.​org/​10.​54499/​UIDP/​00690/​2020); and SusTEC, LA/P/0007/2020 (https://​doi.​org/​10.​54499/​LA/P/​0007/ 
2020), and CICECO-Aveiro Institute of Materials, UIDB/50011/2020 (https://​doi.​org/​10.​54499/​UIDB/​
50011/​2020), UIDP/50011/2020 (https://​doi.​org/​10.​54499/​UIDP/​50011/​2020) and LA/P/0006/2020 (https://​
doi.​org/​10.​54499/​LA/P/​0006/​2020), all financed by national funds through the FCT/MCTES (PIDDAC). 
The financial support from IUPAC Project No. 2022-002-2-500 is highly acknowledged.

Author Contributions  Christopher A. Piske: Investigation, Methodology, Formal Analysis, Data Curation, 
Writing – Original Draft. Priscilla G. Leite: Writing – Review and Editing. Mónia A. R. Martins: Resources, 
Writing – Review and Editing. Olga Ferreira: Resources, Writing – Review and Editing. João A. P. 
Coutinho: Formal Analysis, Writing – Review and Editing. Dinis O. Abranches: Conceptualization, Inves-
tigation, Methodology, Formal Analysis, Writing – Review and Editing, Supervision. Simão P. Pinho: Con-
ceptualization, Investigation, Methodology, Formal Analysis, Writing – Review and Editing, Supervision.

Funding  Open access funding provided by FCT|FCCN (b-on).

Data Availability  The datasets and Python code used in this work are freely available in the following 
GitHub repository: https://​github.​com/​dinis​Abran​ches/​Glyci​ne_​GPs.

Declarations 

Competing Interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Aliyeva, M.: Ion effects on protein model compounds in aqueous systems: experimental and computa-
tional studies. Universidade de Aveiro, Aveiro (2022)

	 2.	 Aliyeva, M., Brandão, P., Coutinho, J.A.P., Ferreira, O., Pinho, S.P.: Solubilities of amino acids in 
the presence of chaotropic anions. J. Sol. Chem. 53(4), 527–537 (2024). https://​doi.​org/​10.​1007/​
s10953-​023-​01282-3

	 3.	 El-Dossoki, F.I.: Effect of the charge and the nature of both cations and anions on the solubility of 
zwitterionic amino acids, measurements and modeling. J. Sol. Chem. 39(9), 1311–1326 (2010). https://​
doi.​org/​10.​1007/​s10953-​010-​9580-3

	 4.	 Pradhan, A.A., Vera, J.H.: Effect of anions on the solubility of zwitterionic amino acids. J. Chem. Eng. 
Data 45(1), 140–143 (2000). https://​doi.​org/​10.​1021/​je990​2342

	 5.	 Aliyeva, M., Brandão, P., Gomes, J.R.B., Coutinho, J.A.P., Ferreira, O., Pinho, S.P.: Solubilities of 
amino acids in aqueous solutions of chloride or nitrate salts of divalent (Mg2+ or Ca2+) cations. J. 
Chem. Eng. Data 67(6), 1565–1572 (2022). https://​doi.​org/​10.​1021/​acs.​jced.​2c001​48

	 6.	 Ferreira, L.A., Macedo, E.A., Pinho, S.P.: The effect of ammonium sulfate on the solubility of amino 
acids in water at (298.15 and 323.15) K. J. Chem. Thermodyn. 41(2), 193–196 (2009). https://​doi.​org/​
10.​1016/j.​jct.​2008.​09.​019

	 7.	 Ferreira, L.A., Macedo, E.A., Pinho, S.P.: Effect of KCl and Na2SO4 on the solubility of glycine and 
DL-alanine in water at 298.15 K. Ind. Eng. Chem. Res. 44(23), 8892–8898 (2005). https://​doi.​org/​10.​
1021/​ie050​613q

https://doi.org/10.54499/UIDB/00690/2020
https://doi.org/10.54499/UIDP/00690/2020
https://doi.org/10.54499/UIDP/00690/2020
https://doi.org/10.54499/LA/P/0007
https://doi.org/10.54499/UIDB/50011/2020
https://doi.org/10.54499/UIDB/50011/2020
https://doi.org/10.54499/UIDP/50011/2020
https://doi.org/10.54499/LA/P/0006/2020
https://doi.org/10.54499/LA/P/0006/2020
https://github.com/dinisAbranches/Glycine_GPs
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10953-023-01282-3
https://doi.org/10.1007/s10953-023-01282-3
https://doi.org/10.1007/s10953-010-9580-3
https://doi.org/10.1007/s10953-010-9580-3
https://doi.org/10.1021/je9902342
https://doi.org/10.1021/acs.jced.2c00148
https://doi.org/10.1016/j.jct.2008.09.019
https://doi.org/10.1016/j.jct.2008.09.019
https://doi.org/10.1021/ie050613q
https://doi.org/10.1021/ie050613q


Journal of Solution Chemistry	

	 8.	 Carta, R., Tola, G.: Solubilities of L-cystine, L-tyrosine, L-leucine, and glycine in aqueous solutions 
at various pHs and NaCl Concentrations. Ind. Eng. Chem. Res. 41, 414–417 (1996). https://​doi.​org/​10.​
1021/​je950​1853

	 9.	 Abranches, D.O., Maginn, E.J., Colón, Y.J.: Activity coefficient acquisition with thermodynamics-
informed active learning for phase diagram construction. AIChE J. 69, 8 (2023). https://​doi.​org/​10.​
1002/​aic.​18141

	10.	 Roy, S., Guin, P., Mahali, K., Dolui, B.: Solubility and transfer Gibbs free energetics of glycine, DL-
alanine, DL-nor-valine and DL-serine in aqueous sodium fluoride and potassium fluoride solutions at 
298.15 K. Ind J of Chem 56, 399–406 (2017)

	11.	 Khoshkbarchi, M.K., Vera, J.H.: Effect of NaCl and KCl on the Solubility of amino acids in aque-
ous solutions at 298.2 K: measurements and modeling. Ind. Eng. Chem. Res. 36, 2445–2451 (1997). 
https://​doi.​org/​10.​1021/​ie960​6395

	12.	 Roy, S., Guin, P.S., Mahali, K., Hossain, A., Dolui, B.K.: Evaluation and correlation of solubility and 
solvation thermodynamics of glycine, DL-alanine and DL-valine in aqueous sodium sulphate solutions 
at two different temperatures. J. Mol. Liq. 234, 124–128 (2017). https://​doi.​org/​10.​1016/j.​molliq.​2017.​
03.​068

	13.	 Hossain, A., Mahali, K., Dolui, B.K., Guin, P.S., Roy, S.: Solubility analysis of homologous series 
of amino acids and solvation energetics in aqueous potassium sulfate solution. Heliyon 5, 8 (2019). 
https://​doi.​org/​10.​1016/j.​heliy​on.​2019.​e02304

	14.	 Guin, P.S., Mahali, K., Dolui, B.K., Roy, S.: Solubility and thermodynamics of solute-solvent interac-
tions of some amino acids in aqueous sodium bromide and potassium bromide solutions. J. Chem. 
Eng. Data 63(3), 534–541 (2018). https://​doi.​org/​10.​1021/​acs.​jced.​7b006​47

	15.	 Roy, S., Guin, P.S., Mondal, S., Ghosh, S., Dolui, B.K.: Solubility of glycine and DL-nor-valine in 
aqueous solutions of NaNO3 and KNO3 and measurements of transfer thermodynamics. J. Mol. Liq. 
222, 313–319 (2016). https://​doi.​org/​10.​1016/j.​molliq.​2016.​07.​050

	16.	 Kundu, S., Mahali, K., Roy, S.: Solvation thermodynamics of four amino acids in electrolytic solutions 
of sodium and potassium iodide salts at 298.15 K. Can. J. Chem. 101(4), 224–234 (2023). https://​doi.​
org/​10.​1139/​cjc-​2022-​0251

	17.	 Venkatesu, P., Lee, M.J., Lin, H.M.: Transfer free energies of peptide backbone unit from water to 
aqueous electrolyte solutions at 298.15 K. Biochem. Eng. J. 32(3), 157–170 (2006). https://​doi.​org/​10.​
1016/j.​bej.​2006.​09.​015

	18.	 Datta, A., Roy, S.: Thermodynamics of solute-solvent interactions and solubility of some amino acids 
in aqueous sodium iodide solutions at T = 298.15 K. Russ. J. Phys. Chem. A 95, S62–S70 (2021). 
https://​doi.​org/​10.​1134/​S0036​02442​11400​41

	19.	 Ramasami, P.: Solubilities of amino acids in water and aqueous sodium sulfate and related apparent 
transfer properties. J. Chem. Eng. Data 47(5), 1164–1166 (2002). https://​doi.​org/​10.​1021/​je025​503u

	20.	 Held, C., Reschke, T., Müller, R., Kunz, W., Sadowski, G.: Measuring and modeling aqueous electro-
lyte/amino-acid solutions with ePC-SAFT. J. Chem. Thermodyn. 68, 1–12 (2014). https://​doi.​org/​10.​
1016/j.​jct.​2013.​08.​018

	21.	 Abranches, D.O., Maginn, E.J., Colón, Y.J.: Stochastic machine learning via sigma profiles to build a 
digital chemical space. Proc. Nat. Acad. Sci. 121, 31 (2024). https://​doi.​org/​10.​1073/​pnas.​24046​76121

	22.	 TURBOMOLE V7.1 2016, A development of University of Karlsruhe and Forschungszentrum 
Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from \\ http://​www.​turbo​
mole.​com.”

	23.	 “BIOVIA COSMOtherm, Release 2021,” Dassault Systèmes. http://​www.​3ds.​com

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1021/je9501853
https://doi.org/10.1021/je9501853
https://doi.org/10.1002/aic.18141
https://doi.org/10.1002/aic.18141
https://doi.org/10.1021/ie9606395
https://doi.org/10.1016/j.molliq.2017.03.068
https://doi.org/10.1016/j.molliq.2017.03.068
https://doi.org/10.1016/j.heliyon.2019.e02304
https://doi.org/10.1021/acs.jced.7b00647
https://doi.org/10.1016/j.molliq.2016.07.050
https://doi.org/10.1139/cjc-2022-0251
https://doi.org/10.1139/cjc-2022-0251
https://doi.org/10.1016/j.bej.2006.09.015
https://doi.org/10.1016/j.bej.2006.09.015
https://doi.org/10.1134/S0036024421140041
https://doi.org/10.1021/je025503u
https://doi.org/10.1016/j.jct.2013.08.018
https://doi.org/10.1016/j.jct.2013.08.018
https://doi.org/10.1073/pnas.2404676121
http://www.turbomole.com
http://www.turbomole.com
http://www.3ds.com

	Meta-analysis on the Salt Effect on Glycine Solubility Applying Gaussian Processes
	Abstract
	1 Introduction
	2 Methodology
	2.1 Sigma Profiles
	2.2 Gaussian Process (GP)

	3 Results and Discussion
	3.1 Dataset
	3.2 GP Regression
	3.3 GP Meta-Analysis

	4 Conclusions
	Acknowledgements 
	References


