Ecotoxicological evaluation of magnetic ionic liquids

Tânia E. Sintra a, Maryam Nasirpour a, Filipa Siopa b, Andreia A. Rosatelli b, Fernando Gonçalves c, João A.P. Coutinho a, Carlos A.M. Afonso b, Sónia P.M. Ventura a,⁎

a CICECO - Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
b Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
c Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal

ARTICLE INFO

Keywords:
Ionic liquids
Ecotoxicity
Vibrio fischeri
Risk assessment

ABSTRACT

Although magnetic ionic liquids (MILs) are not yet industrially applied, their continued development and eventual commercial use may lead to their appearance into the aquatic ecosystem through accidental spills or effluents, consequently promoting aquatic contaminations. Furthermore, the deficient information and uncertainty surrounding the environmental impact of MILs could be a major barrier to their widespread industrial application and international registration. Thus, in the present work, a range of cholinium salt derivatives with magnetic properties was synthesized and their ecotoxicity was evaluated towards the luminescent bacteria Vibrio fischeri. The results suggest that all MILs structures tested are moderately toxic, or even toxic, to the bacteria. Furthermore, their toxicity is highly dependent on the structural modifications of the cation, namely the alkyl side chain length and the number of hydroxyethyl groups, as well as the atomic number of the metal anion. Finally, from the magnetic anions evaluated, the [MnCl4]2− is the less toxic. In order to improve the knowledge for the prospective design of environmentally safer MILs, it is important to expand this study to other aquatic organisms at different trophic levels.

1. Introduction

The increasing attention that ionic liquids (ILs) are attracting is justified by their unique properties, such as their negligible vapor pressure, high chemical and thermal stability, their non-flammability, high ionic conductivity, wide electrochemical potential window and high solvation ability (Rogers and Seddon, 2003). Furthermore, these ionic compounds are considered as “designer solvents” due to their tunable properties, which means that they can be designed for a specific application by the proper combination of the adequate cation and anion (Rogers and Seddon, 2003). Some reviews have highlighted the industrial applications of ILs as an innovative approach to “Green Chemistry” and sustainability (Rogers et al., 2002). However, the fact that they have a negligible vapor pressure is not enough to assure that these compounds can be considered as environmentally harmless solvents. Actually, even the most hydrophobic ILs present some solubility in water and thus, they may constitute an environmental risk to aquatic ecosystems (Nacham et al., 2015). A broad range of testing models (bacteria, fungi, algae, aquatic plants, crustaceans, mammalian cell lines and vertebrates) has been used to evaluate the toxicity of distinct ILs (Amde et al., 2015; Cvetko Bubalo et al., 2014; Petkovic et al., 2011; Santos et al., 2015). In what concerns their aquatic toxicity, the most tested trophic levels are decomposers represented by marine bacteria (e Silva et al., 2014; Ventura et al., 2012), producers represented by microalgae (Samori et al., 2015; Ventura et al., 2012) and primary consumers represented by cladocerans (Samori et al., 2015; Ventura et al., 2012). Magnetic ionic liquids (MILs) appear as an emerging class of ILs that are inherently paramagnetic, being able to respond to an external magnetic field. These magnetic compounds favorably combine the advantageous properties of ILs with magnetic characteristics, which can be interesting for applications in process and product engineering as an expanding field full of opportunities to create devices, processes and products (Clark et al., 2016; Santos et al., 2014a). In fact, MILs have been studied in fluid-fluid separations (Zhao et al., 2016), in the extraction of nucleic acids like DNA (Clark et al., 2015), in chemical reactions, namely as catalysts (Bica and Gaertner, 2008), reaction medium (Mohammad Fauzi et al., 2014) and solvents (Zakrzewska et al., 2013), in polymer chemistry (Dobbelin et al., 2011), in electrochemical devices (Branco et al., 2011) and as magnetic fluids (Guerrero-Sanchez et al., 2007). The paramagnetic properties of MILs may be located on the anion, cation or both. Their synthesis is normally based on the use of transition metals or lanthanide complexes in the anion structure (Santos et al., 2014a). The first MIL, namely the 1-butyl-3-methylimidazolium tetrachloroferrate, [C₄mim]•FeCl₄
design of safer MILs. Moreover, the (eco)toxicological hazard pro-
and needs to be expanded to improve the knowledge for the adequate
environmental behavior of MILs, data on their ecotoxicity is still scarce,
Despite the initial e-
toxic than toluene, taken as reference for common volatile solvents.

including those related with the regulatory demands de-
ff
ILs with industrial potential must address a set of di-
MILs based on the cholinium derivative cation in combination with
the present study proposes the ecotoxicological assessment of a series of
section and Restriction of Chemicals (REACH) (EC, 2007). In this context,
European Union regulation for the Registration, Evaluation, Authoriza-

methods was applied to describe the influence of the molecular
structure of common ILs and MILs on the (eco)toxicity (Luis et al.,
2011). The authors have shown that the presence of iron in the
molecular structure of imidazolium-based ILs leads to an increase in
ecotoxicity (Luis et al., 2011). Alvarez-Guerra and Ibrahim (2011)
reported a new approach for estimating the (eco)toxicity of ILs,
including MILs, using a Partial Least Squares-Discriminant Analysis
(PLS-DA). In this study, the [FeCl₄]⁻ anion had the most severe
influence on the PLS-DA model as positive discriminator, being more
toxic than toluene, taken as reference for common volatile solvents.
Despite the initial efforts carried to offer a preliminary insight into the
environmental behavior of MILs, data on their ecotoxicity is still scarce,
and needs to be expanded to improve the knowledge for the adequate
design of safer MILs. Moreover, the (eco)toxicological hazard profile of
ILs with industrial potential must address a set of different rules,
including those related with the regulatory demands defined by the
European Union regulation for the Registration, Evaluation, Authoriza-
and Restriction of Chemicals (REACH) (EC, 2007). In this context,
the present study proposes the ecotoxicological assessment of a series of
MILs based on the cholinium derivative cation in combination with
[FeCl₄]⁻, [MnCl₄]²⁻, [CoCl₄]²⁻ and [GdCl₄]³⁻ anions, towards the V.
fischeri marine bacteria. This work is part of an integrated study being
performed by our group in which different cholinium IL structures have
been analyzed. The purpose is not only to evaluate the effect of different
anions conjugated with the cholinium cation but also to infer about the
benign toxicological character normally claimed for cholinium-based
ILs and derivatives when this structure is conjugated with magnetic
anions.

2. Experimental

2.1. Materials

All solvents were distilled prior to use. All chemicals were pur-
chas ed from Sigma-Aldrich.

2.2. General method for the synthesis of MILs

2.2.1. General method for cholinium chloride derived base MILs

Synthesis of [Nₓ,x,x,x,Cl (x = alkyl or ethanol) was adapted from (e
Silva et al., 2014; Rosatella et al., 2016). In a closed vessel at room
temperature, it was added N-methyldiethanolamine (143 mmol), or N-
dimethylethanalamine (143 mmol) to the correspondent alkyl chloride
(1–4 mol eq.), and sodium iodide (10–30 mol eq.). In some procedures
acetoniitrile was used as a solvent. The solution was heated at 60–80 °C
for 1–7 days. The solvent was removed on a rotary evaporator. The
resulted salt was dissolved in dichloromethane and the sodium halide
removed by filtration. The obtained salt was dried under vacuum and
used in the next step without further purification. For more details see
the Supporting Information.

2.2.2. General method for magnetic ILs [N₁,n,2(OH)] [MCl₄] and
[N₁,n,2(OH),2(OH)] [MCl₄]

The MILs were prepared using the reported procedures with some
modifications (Del Sesto et al., 2008; Frade et al., 2013; Rosatella et al.,
2016). The metal chloride hydrated salt MCl₄·H₂O (1 equiv. for
FeCl₃·6H₂O; 0.5 equiv. for CoCl₂·6H₂O and MnCl₂·4H₂O, and 0.3 equiv.
for GdCl₃·6H₂O) was added to a solution of cholinium derivative
chloride salt (10 mmol) in methanol (20 mL). The reaction mixture
was stirred overnight at room temperature. The solution was evaporated
on a rotary evaporator at 50 °C, and then kept under vacuum for 48 h at
1–4 × 10⁻² mbar (rotary pump) and for 48 h at 6 × 10⁻⁵ mbar with
stirring at 50 °C. More detailed information about the synthesis of MILs
is reported in the Supporting Information, namely in Table S1.

2.3. Standard Microtox® liquid-phase assays

In order to evaluate the ecotoxicity of the MILs prepared, the
Standard Microtox® liquid-phase assay was applied in this work. The
Microtox® test is based on the evaluation of the bioluminescence
inhibition considering the bacteria V. fischeri (strain NRRLB-11777)
tested at 15 °C. The bacteria was exposed to a range of diluted aqueous
solutions (from 0 to 81.9 wt%) of each tested compound, where 100%
corresponds to the stock solution concentration. The light output of V.
fischeri was measured after 5, 15 and 30 min of exposure to each MIL,
and compared with the light output obtained for the blank control
sample, an aqueous solution without the presence of any MIL. (Figs. 1–4).
Then, the corresponding 15 min- and 30 min-EC₅₀ values
considered as the most reliable parameters to take into account
(concentration of MIL which promotes 50% of bacteria luminescence
inhibition), plus the corresponding 95% confidence intervals, were
estimated for each compound tested by a non-linear regression, and
using the least-squares method to fit the data to the logistic equation.
Considering that the luminescence changes as a direct function of the
bacteria’s overall viability, the lower the EC₅₀ value, the higher the MIL
toxicity. In order to obtain the correct EC₅₀ values, prior to Microtox®
testing, the water content of each MIL was determined by Karl Fischer
(KF) titration using a Metrohm 831 KF coulometric titrator.

3. Results and discussion

Distinct cholinium and cholinium derivatives, with different num-
ber of hydroxyethyl groups and lengths of the alkyl side chain, were
combined with the magnetic anions [FeCl₄]⁻, [MnCl₄]²⁻, [CoCl₄]²⁻,
[GdCl₄]³⁻ in order to obtain 24 MILs, whose toxicities were tested
against the marine bacteria (Fig. S1). All MILs were soluble in water for
the range of concentrations used. The ecotoxicological impact of these
MILs was evaluated using the standard Microtox® acute assay. Although
this is not a standard toxicity test defined in the European Union
legislation and by REACH, it is nevertheless a quick and cost-efficient
first-appoch to evaluate the toxicity of various compounds. Moreover,
this is a methodology well accept in the development of QSAR models
for the prediction of MILs toxicity (Das et al., 2016, 2015; Luis et al.,
2007), and the QSAR approach for toxicity predictions is encouraged by
REACH legislation of the European Union. This assay has been widely
used to evaluate the toxicity of ILs, including cholinium derivatives (e
Silva et al., 2014; Ventura et al., 2012). This test is based on the
bioluminescent bacteria V. fischeri, with the luminescence being a

T.E. Sintra et al., Ecotoxicology and Environmental Safety 143 (2017) 315–321
natural part of its metabolism. When exposed to a toxic compound, the respiratory process of the bacteria is disturbed, reducing the light output, causing the bioluminescence inhibition correlated with the toxicity. Thus, EC50 values (mg. L\(^{-1}\)) were determined for the synthetized MILs after 15 and 30 min of exposure to the marine bacteria (Table 1 and S2). The results obtained for the MILs composed of \([\text{CoCl}_4]^2-\) and \([\text{GdCl}_6]^3-\) anions, \([\text{N}\,1,1,1,2(\text{OH})]^2[\text{MnCl}_4]\) and \([\text{N}1,6,2(\text{OH}),2(\text{OH})]^2[\text{MnCl}_4]\) show a decreasing order of the EC50 values with the increase of the exposure time from 15 to 30 min. This behavior can be justified by their toxicokinetics (see Ventura et al., 2014), that means the passage of the MILs throughout the cell wall increased over the time and/or the sorption of the MILs to the bacterial surface increased over the time, both disturbing the physiological process of the organism. This relationship was not observed for the other compounds studied, namely those based in the \([\text{FeCl}_4]^-\) and \([\text{MnCl}_4]^2-\) anions, probably because the permeability ratios of Gram-negative cell wall channels were rather high in favor of the cations, being the number of charges important in this process. On the other hand, the detoxication phenomenon, described as the momentary physiological adaptation of the microorganism to the toxicant effect, which is identified during the period of exposure (Denich et al., 2003), can contribute to explain our results. The outer membrane of Gram-negative bacteria (like \textit{V. fischeri}) plays an important role controlling the binding process (or passage) of some substances that can impair the physiology of these organisms. Among the factors that may shape this process, one can identify the charge, the chain length of the substances, the selectivity of cell wall channel, and the presence of the specific binding sites, which can contribute to fully explain our results.

In order to easily understand the impact of the chemical structure of MILs studied on their ecotoxicity, the EC50 values obtained after 30 min of exposure were considered for further discussion, since this is the time recommended for the toxicity analysis of chemical compounds using Microtox\textsuperscript® assay (Denich et al., 2003). Thus, according to these values, it is possible to categorize these compounds as moderately toxic (meaning 10 mg L\(^{-1}\) < EC50 < 100 mg L\(^{-1}\)) except for \([\text{N}1,1,1,2(\text{OH})]^2[\text{CoCl}_4]\), \([\text{N}1,1,1,2(\text{OH})]^2[\text{FeCl}_4]\), \([\text{N}1,1,1,2(\text{OH})]^2[\text{MnCl}_4]\), \([\text{N}1,1,1,2(\text{OH})]^2[\text{CoCl}_4]\) and \([\text{N}6,2(\text{OH}),2(\text{OH}),2(\text{OH})]^2[\text{FeCl}_4]\), that are considered as toxic substances, with 1 mg L\(^{-1}\) < EC50 < 10 mg L\(^{-1}\). Curiously, among the MILs studied, the compounds presenting the lowest and highest toxicity against \textit{V. fischeri} are MILs based on the \([\text{MnCl}_4]^2-\) anion, the \([\text{N}1,6,2(\text{OH}),2(\text{OH})]^2[\text{MnCl}_4]\) and \([\text{N}1,1,1,2(\text{OH})]^2[\text{MnCl}_4]\). This suggests that part of the toxicity observed is derived from the cation and not the anion (see above), further supporting previous results suggesting that the cholinium derivatives are not innocuous (Santos et al., 2015; Ventura et al., 2014) contrary to several studies (Li et al., 2012; Petkovic et al., 2011).

The range of MILs studied allows the assessment of the impact of several structural features on their ecotoxicity, such as the increase in the alkyl chain length and the addition of hydroxyethyl groups to the cation, and the impact of various magnetic anions. Fig. 5A depicts the results of toxicity towards the marine bacteria considering the series with one hydroxyethyl group and the various metal anions, \([\text{N}\,1,1,1,2(\text{OH})]^2[\text{MnCl}_4]\) (n = 1, 6, 8, 12), as well-reported in literature for a variety of ILs (e Silva et al., 2014). This phenomenon has been justified by the enhancement of the ILs hydrophobic/lipophilic character, defined in several works by the octanol-water partition coefficients (Montalbán et al., 2016; Ropel et al., 2005).

Thus, the increase in the length of the alkyl chain makes possible their interaction with the membrane phospholipids and/or the hydrophobic domains of the membrane proteins, leading to the disruption of the
membrane physiological functions and, consequently, to cell death (Cvjetko Bubalo et al., 2014; Stolte et al., 2007). However, this dependency is less significant for the series $[N_{1,1,n,2(OH)}][FeCl_4]$ ($n = 1, 2, 6, 8, 12$) and $[N_{1,1,n,2(OH)}][CoCl_4]$ ($n = 1, 8, 12$), except in the transition from $[N_{1,1,8,2(OH)}][CoCl_4]$ to $[N_{1,1,12,2(OH)}][CoCl_4]$. Furthermore, when the alkyl chain increases from 4 to 6 carbons in the series $[N_{1,1,n,2(OH,2(OH)}][M]$ ($M =$ metal anion), the EC$_{50}$ (μM) is practically constant, if considering the confidence limits, as present in Fig. 5B. In a previous work, the toxicity of similar series based on the bromide anion, $[N_{1,1,n,2(OH)}][Br]$ ($n = 2, 3, 4, 5, 6, 8, 12$) and $[N_{1,1,n,2(OH,2(OH)}][Br]$ ($n = 3, 6, 12$), was also assessed using the luminescent bacteria $V. fischeri$ (e Silva et al., 2014). For these series based on the bromide anion, the effect of the alkyl chain length was pronounced. The EC$_{50}$ values for the $[N_{1,1,n,2(OH)}][Br]$ are also presented in Fig. 5A. These results highlight the impact of the replacement of an halide (bromide) by a metal anion, leading to a very significant increase in the toxicity against

Fig. 2. Concentration response plot for $[MnCl_4]$-based MILs after (\bigcirc) 5, (\bigcirc) 15 and (\bigcirc) 30 min of exposure to the luminescent marine bacteria $V. fischeri$. The standard error associated to these results is lower than 10%.

Fig. 3. Concentration response plot for $[CoCl_4]$-based MILs after (\bigcirc) 5, (\bigcirc) 15 and (\bigcirc) 30 min of exposure to the luminescent marine bacteria $V. fischeri$. The standard error associated to these results is lower than 10%.
The results shown in Fig. 5A indicate that, although the toxicity of the MILs is highly dependent on the magnetic anion, for long alkyl chains (n=12), the cation toxicity becomes dominant.

The impact of the number of hydroxyethyl groups was also evaluated using the series of \([\text{N}1,1,6,2(\text{OH})]^+\), \([\text{N}1,6,2(\text{OH}),2(\text{OH})]^+\) and \([\text{N}6,2(\text{OH}),2(\text{OH}),2(\text{OH})]^+\) cations conjugated with the four magnetic anions under study. The results presented in Fig. 5C suggest that the insertion of hydroxyethyl groups in the cation alkyl chains increases the toxicity towards the bacteria. This trend is in accordance with what was previously observed in literature (e Silva et al., 2014; Rosatella et al., 2016). Actually, the incorporation of hydroxyl groups of oxygenated alkyl chains is being subject of distinct analysis, not only from the point of view of potential applications but also due to their increased biodegradable nature (Coleman and Gathergood, 2010). The only exception is the transition from \([\text{N}1,1,6,2(\text{OH})]^2[\text{MnCl}_4]\) to \([\text{N}1,6,2(\text{OH}),2(\text{OH})]^2[\text{MnCl}_4]\). For these cations, unlike those discussed above for the long alkyl chain, the EC50 values show a significant increase in the toxicity of the MIL with metal containing anions, when compared with the corresponding bromide containing ILs (e Silva et al., 2014). Moreover, and contrary to what is observed in the imidazolium family functionalized with polar groups, the incorporation of oxygenated alkyl chains increases the toxicity of the cholinium derivatives (Stolte et al., 2007). This reinforces the idea that the cholinium derivatives have different mechanisms of toxicity from those of imidazolium-based ILs (Ventura et al., 2014).

![Concentration response plot for \([\text{GdCl}_6]^-\)-based MILs after (○) 5, (●) 15 and (■) 30 min of exposure to the luminescent marine bacteria \(V.\ fischeri\). The standard error associated to these results is lower than 10%.

Table 1

<table>
<thead>
<tr>
<th>MIL</th>
<th>EC50 / mg L(^{-1}) at 30 min (lower limit; upper limit)</th>
<th>Order of ecotoxicity According to EC50 ((\mu)M)</th>
</tr>
</thead>
</table>

n.d. – not determined;

\(^a\) values from (e Silva et al., 2014).

Fig. 4. Concentration response plot for \([\text{GdCl}_6]^-\)-based MILs after (○) 5, (●) 15 and (■) 30 min of exposure to the luminescent marine bacteria \(V.\ fischeri\). The standard error associated to these results is lower than 10%.
effect of the magnetic anions, the increasing order of ecotoxicity, decreasing order of EC50, was determined for each cation, as shown in Table 1. From the seven sequences analyzed, the \([\text{MnCl}_4]^2-\) anion appears consistently as the least toxic (in five of this seven sequences) to \(V.\) \(fischeri\). However, this same anion, \([\text{MnCl}_4]^2-\) is the most toxic when conjugated with the \([\text{N1,1,12,2(OH)}]^+\) cation, which has itself a pronounced influence on the bacterial toxicity. On the other hand, the \([\text{CoCl}_4]^2-\) anion seems to present a contradictory behavior. Although the \([\text{CoCl}_4]^2-\) anion appears as the least toxic when conjugated with \([\text{N1,1,12,2(OH)}]^+\) and \([\text{N6,2(OH),2(OH),2(OH)}]^+\) cations, it is the anion most frequently reported as the most toxic to the bacteria. Many authors have tried to prove correlations between the physico-chemical properties of different metal ions and their toxicity (e.g., Wolterbeek and Verburg, 2001). In the present work, and not considering the \([\text{GdCl}_6]^3-\) anion, it seems that an increased toxicity is observed by increasing the atomic number of the metal atoms: \(\text{Mn (25)} < \text{Fe (26)} < \text{Co (27)}\). This behavior is in agreement with the results obtained by Li et al. (2013), where a positive correlation between the atomic number of the metal ion and their toxicity against \(V.\) \(fischeri\) was observed. However, this trend was not observed when these magnetic anions were combined with the \([\text{N1,1,12,2(OH)}]^+\) and \([\text{N6,2(OH),2(OH),2(OH)}]^+\) cations, which can be justified again by the high toxicity associated to these cations, which seems to dominate their toxicity.

The toxicological impact of MILs based on cholinium derivative cations combined with \([\text{FeCl}_4]^-, [\text{MnCl}_4]^2-, [\text{CoCl}_4]^2-\) and \([\text{GdCl}_6]^3-\) anions, towards the marine bacteria \(V.\) \(fischeri\). Although their interesting broad of applications, all MILs tested are considered moderately toxic or even toxic to the bacteria. The results indicate that their toxicity is highly dependent on the structural modifications of the cation, namely the alkyl side chain length and the number of hydroxyethyl groups, as well as the metal atom of the anion. Long alkyl chains, the increase in the number of hydroxyethyl groups and the increase in the atomic number of the metal atom are structural features capable of significantly increasing the toxicity of the MILs based on cholinium or cholinium derivatives. Moreover, and contrary to what was reported in previous studies with cell lines, the \([\text{MnCl}_4]^2-\) is the anion presenting low toxicity towards the bacteria, clearly showing that the toxicological effect of the MILs depends not only of their structure but also on the biological system under study. Thus, in order to evaluate the aquatic toxicity more comprehensively, it is crucial to extend this study to other aquatic organisms of different trophic levels.

4. Conclusion

This work presents the ecotoxicological impact of a series of MILs based on cholinium derivative cations combined with \([\text{FeCl}_4]^-, [\text{MnCl}_4]^2-, [\text{CoCl}_4]^2-\) and \([\text{GdCl}_6]^3-\) anions, towards the marine bacteria \(V.\) \(fischeri\). Although their interesting broad of applications, all MILs tested are considered moderately toxic or even toxic to the bacteria. The results indicate that their toxicity is highly dependent on the structural modifications of the cation, namely the alkyl side chain length and the number of hydroxyethyl groups, as well as the metal atom of the anion. Long alkyl chains, the increase in the number of hydroxyethyl groups and the increase in the atomic number of the metal atom are structural features capable of significantly increasing the toxicity of the MILs based on cholinium or cholinium derivatives. Moreover, and contrary to what was reported in previous studies with cell lines, the \([\text{MnCl}_4]^2-\) is the anion presenting low toxicity towards the bacteria, clearly showing that the toxicological effect of the MILs depends not only of their structure but also on the biological system under study. Thus, in this sense, it is crucial to expand this study to other aquatic organisms and different trophic levels to improve the knowledge for the prospective design of safer materials.

Acknowledgements

This work was developed in the scope of the project GICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013), and iMed.

