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Data Sources

This work was developed using leaching data from the publications in Table S1 and
supplemented with our own unpublished data.

Table S1 - Data sources organized by year of publication

Authors Year Ref.
Zhang et al. 1998 [1]
Lee and Rhee 2002 [2]
Wang et al. 2009 [3]
Lietal. 2010 [4]
Lietal. 2012 [5]
Meshram et al. 2015 [6]
He et al. 2017 [7]
Gao etal. 2017 [8]
Golmohammadzadeh etal. | 2017 9]
Lietal. 2017 [10]
Chen and Ho 2018 [11]
Gaoetal. 2018 [12]
Xuan et al. 2019 [13]
Chan et al. 2021 [14]
Xuan et al. 2021 [15]
Kim et al. 2022 [16]
Guimaraes et al. 2022 [17]
Rouquette et al. 2023 [18]
Jiang et al. 2023 [19]
Vieceli et al. 2023 [20]
Partinen et al. 2023 [21]
Sahu and Devi 2023 [22]




Features

Table S2 - Inventory of the features and respective units organized by category

Category

Source

Feature

Unit

Reaction conditions

Manual input

inputNi
inputMn
inputCo
Temperature
Acid concentration
H,O, concentration
Solid-liquid ratio
Time

Basic acid descriptors

Manual input

SMILES
Number of protons
pK61

Dissociation constants

Manual input

pKaz, pKas

Solubilities

Manual input

Li, Ni, Mn, Co salt solubility

Lipinski’s rule of five

RDKit

logP
TPSA
Number of HBD
Number of HBA
Molar weight

Charge and polarisability

RDKit

Max partial charge
Min partial charge
Molar refractivity

Molecular structure and
functional groups

RDKit

Carboxylic acid groups
C—O bonds
Primary amine groups
Tertiary amine groups
Halogen atoms
Aliphatic hydroxyl groups
Sulfur atoms



Dataset Composition

Frequency in dataset

Tartaric
Malic
Levulinic
Oxalic
Citric
Ascorbic
Lactic
Formic
Acetic
Nitric

Sulfuric

Hydrochloric
0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Figure S1 - Distribution of acids in the dataset

Hyperparameter optimization

Model hyperparameters were optimized using the Optuna package. [23] Optuna follows a
Bayesian optimization approach to efficiently search the hyperparameter space. The
parameters to optimize and the ranges to consider are specified in Table S3 of the ESI. The
Optuna package uses Bayesian optimization to test hyperparameter combinations,
considering previous optimization attempts to try to estimate the effect of varying each of the
hyperparameters, resulting in a more efficient optimization than a traditional grid search,
which iterates through all possible hyperparameter combinations. Each model was optimized
in 20 to 100 trials. In each one, a specific hyperparameter combination is sampled from the
ranges in Table S3. All parameters not mentioned were kept to the default, as implemented in
the scikit-learn package. The performance of this configuration is evaluated using 5-fold cross
validation, calculating the negative mean squared error (MSE) across the folds. The objective
function of the optimization was to maximize the negative MSE for all models except ANN and
PD-ANN, whose objective function was R? maximization. Optuna’s MedianPruner was
employed to accelerate this process, skipping unpromising trials based on intermediate
results.



Table S3 - Hyperparameter optimization ranges for each of the models

Model Hyperparameter Range

Number estimators 10 to 500
RE Max depth 2 to 32 (log scale)

Min. samples split 2to 20
Min. samples leaf 2to 10
Max. iterations 50 to 500
Max. depth 2to 10
Min. samples leaf 3to 10

GBR Learning rate 0.01to 0.3 (log scale)
Max. bins 64 to 255
L2 regularization 10°to 10 (log scale)
Max. leaf nodes 20to 200
Alpha 10%,10%,10%, 102, 10™
Hidden layer sizes 8, 16, 32, 64

ANN Activation Logistic, ReLU, tanh
Learning rate Constant, adaptive
Early stopping True, False
Number estimators 100 to 500

PD-RF M?x. depth ' 10 to 32 (log scale)
Min. samples split 2to 10
Min. samples leaf 2to 10
Max. iterations 50 to 500
Max. depth 5to 15
Min. samples leaf 10to 100

PD-GBR | Learning rate 0.01to 0.3 (log scale)
Max. bins 128 to 255
L2 regularization 10°to 10 (log scale)
Max. leaf nodes 50 to 500
Alpha 10%,10%,10%, 102, 10™
Hidden layer sizes 16, 32, 64, 128, 256
PD-ANN | Activation Logistic, ReLU, tanh

Learning rate
Early stopping

Constant, adaptive
True, False




Performance metrics

Table S4 - Summary of the performance metrics used for model evaluation. y; — experimental value for
i-th observation; J; — predicted value for i-th observation; ¥ — average of the experimental values; n —
number of observations.

Performance metrics

Equation

Coefficient of determination (Rz)

Mean absolute error (MAE)

Median absolute error (MedAE)
Mean squared error (MSE)

Root mean squared error (RMSE)

Environmental impact categories

Z‘{L:l(yl _5}1)2
Yis i — )
1 n
MAE = _Z C—
n L, lyi — yil

R? =

MedAE = median(|y; — y;|)

1 n
MSE = —Z
n i=1
\/1 n
RMSE = —Z
n i=1

i — }71')2

i — ¥1)?

Table S5 - Environmental impact categories and units from the Environmental Footprint 3.1 method.

Impact category Unit
Acidification mol H+ eq
Climate change kg CO2 eq
Climate change - Biogenic kg CO2eq
Climate change - Fossil kg CO2 eq
Climate change - Land use and LU change | kg CO2 eq
Ecotoxicity, freshwater CTUe
Particulate matter disease inc.
Eutrophication, marine kg N eq
Eutrophication, freshwater kg P eq
Eutrophication, terrestrial mol N eq
Human toxicity, cancer CTUh

Human toxicity, non-cancer CTUh
lonising radiation kBqg U-235 eq
Land use Pt

Ozone depletion kg CFC11 eq
Photochemical ozone formation kg NMVOC eq
Resource use, fossils M)

Resource use, minerals and metals kg Sb eq
Water use m3 depriv.




Technical economic analysis

Table S6 — Bulk acid prices used to calculate reagent costs. A conversion rate of 1 USD to 0.88 EUR was

considered.

Acid Price (€/kg) Purity Location Date Source
Nitric 0.3934 67% Germany Q12025 ChemAnalyst[24]
Sulfuric 0.1170 98% Germany Q12025 IMARC Group [25]
Acetic 0.6160 99% Germany Q12025 ChemAnalyst[26]
Formic 0.7172 99% Germany Q12025 ChemAnalyst[27]
HCL 0.1443 36% Germany Q12025 ChemAnalyst[28]
Citric 1.2056 99% France Q12025 IMARC Group [29]
Oxalic 0.6336 98% Germany Q22024 ChemAnalyst [30]
Ascorbic 2.8600 99% Germany Q12025 IMARC Group [31]
Lactic 1.1792 90% Germany Q22024 ChemAnalyst[32]
Tartaric 1.8656 95% Germany Q22024 ChemAnalyst[33]
Malic 1.7855 99% Netherlands Q32024 ChemAnalyst [34]
Levulinic 25.2800 97% NA Q22025 Sigma-Aldrich [35]

Table S7 — Miscellaneous parameters used to calculate the heating and mixing costs of the acid slurry

Cost factor Value Unit Source
Power 0.1899 €/kKWh [36]
Mixing 2.00 kW/m? [37]



Training set description

Table S8 — Descriptive statistics of the training set features

Feature Min Max Average Mode Median
inputNi 0.00 0.90 0.36 0.33 0.33
inputMn 0.00 2.00 0.25 0.33 0.30
inputCo 0.00 1.00 0.40 0.33 0.33
T (°C) 20.00 95.00 58.50 50.00 60.00
pKa+ -8.00 4.76 -2.89 -8.00 -3.00
pKaz 0.00 11.70 1.26 0.00 0.00
pKas 0.00 6.40 0.17 0.00 0.00
Mracia 36.46 192.12 72.68 36.46 63.01
Protonsaciq 1.00 3.00 1.40 1.00 1.00
[Acid] (moUL) 0.05 8.00 2.44 1.00 200
[H20-] (wt.%) 0.00 21.00 0.71 0.00 0.00
S/L (g/L) 2.00  333.30 39.60 20.00 2500
Time (min) 0.00 4320.00 141.60 60.00 60.00

sLi (g/100ml) 0.00 83.50  52.60  83.50  40.80
sNi (g/100ml) 0.00 94.20  46.10  66.80  44.40
sMn (g/100ml)  0.00  139.00 61.00  73.90  70.00
sCo (g/100ml)  0.00 97.40  40.40  52.90 38,00

Table S9 — Descriptive statistics of the training set targets

Target Min Max Average Mode Median

xLi 0.00 1.00 0.78 1.00 0.84
XxNi 0.00 1.00 0.64 1.00 0.66
xMn 0.00 1.00 0.58 1.00 0.55
xCo 0.00 1.00 0.57 1.00 0.52

Model selection

Table S10 - Average training statistics for each of the models. The full set of features was considered. R?
- Coefficient of determination, MAE — mean absolute error, MedAE — median absolute error, MSE — mean

square error, RMSE - root mean square error.

Model R? MAE MedAE MSE RMSE
RF_full 0.8878 0.0652 0.0449 0.0089 0.0943
GBR_full 0.9578 0.0371 0.0221 0.0034 0.0580
ANN_full 0.7108 0.1169 0.0892 0.0247 0.1567
PD-GBR_full 0.9966 0.0084 0.0054 0.0003 0.0165
PD-ANN_full 0.9462 0.0469 0.0357 0.0041 0.0637
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Figure S2 — Comparison of experimental yields with the predictions output by the RF, GBR, ANN, PD-
ANN and PD-GBR models.
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Feature selection

Table S11 - List of the model-feature pairs considered for this study and the features that each one
includes. Fields marked with an asterisk (*) denote that missing values were filled in with the median

value for that feature.

Model ID Basic pKa,, Solubilities Lipinski Charge Functional
pKas groups
RF_Full X X X X X X
GBR_full X X X X X X
ANN_full X X* X* X X X
PD-GBR_full X X X X X X
PD-ANN_full X X* X* X X X
ANN_no_pka_sol X X X X
PD-ANN_no_pka_sol X X X X
PD-GBR_base X
PD-GBR_pka_sol X X X
PD-GBR_no_pka X X X X X
PD-GBR_no_sol X X X X X
PD-GBR_no_lipinski X X X X X
PD-GBR_no_charge_pol X X X X X
PD-GBR_no_FG X X X X X

Table S12 - Training statistics for each of the model-feature set pairs. R?> - Coefficient of determination,
MAE - mean absolute error, MedAE — median absolute error, MSE — mean square error, RMSE - root mean

square error.

Model R? MAE MedAE MSE RMSE
RF_full 0.8878 0.0652 0.0449 0.0089 0.0943
GBR_full 0.9578 0.0371 0.0221 0.0034 0.0580
ANN_full 0.7108 0.1169 0.0892 0.0247 0.1567
PD-GBR_full 0.9966 0.0084 0.0054 0.0003 0.0165
PD-ANN_full 0.9462 0.0469 0.0357 0.0041 0.0637
ANN_no_pKa_sol 0.7432 0.1088 0.0824 0.0212 0.1457
PD-ANN_no_pKa_sol 0.9677 0.0362 0.0261 0.0026 0.0508
PD-GBR_base 0.9898 0.0192 0.0132 0.0009 0.0293
PD_GBR_pKa_sol 0.9970 0.0072 0.0046 0.0002 0.0155
PD-GBR_no_pKa 0.9951 0.0121 0.0083 0.0004 0.0201
PD-GBR_no_sol 0.9727 0.0338 0.0243 0.0023 0.0479
PD-GBR_no_lipinski 0.9915 0.0172 0.0117 0.0007 0.0266
PD-GBR_no_charge_pol | 0.9964 0.0091 0.0060 0.0003 0.0171
PD-GBR_no_FG 0.9965 0.0083 0.0052 0.0003 0.0167
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Table S13 - Test statistics for each of the model-feature set pairs. R2 — Coefficient of determination, MAE
— mean absolute error, MedAE — median absolute error, MSE — mean square error, RMSE - root mean
square error.

Model R? MAE MedAE MSE RMSE
RF_full 0.8026 0.0963 0.0741 0.0181 0.1344
GBR_full 0.9137 0.0617 0.0411 0.0081 0.0896
ANN_full 0.6840 0.1319 0.1036 0.0306 0.1737
PD-GBR_full 0.9332 0.0513 0.0283 0.0063 0.0787
PD-ANN_full 0.8044 0.0933 0.0636 0.0180 0.1336
ANN_no_pKa_sol 0.6922 0.1275 0.0977 0.0289 0.1696
PD-ANN_no_pKa_sol 0.7978 0.0928 0.0621 0.0190 0.1373
PD_GBR_base 0.9222 0.0566 0.0341 0.0072 0.0847
PD_GBR_pKa_sol 0.9282 0.0527 0.0274 0.0066 0.0811
PD-GBR_no_pKa 0.9265 0.0527 0.0281 0.0068 0.0824
PD-GBR_no_sol 0.9226 0.0605 0.0447 0.0073 0.0851
PD-GBR_no_lipinski 0.9296 0.0541 0.0330 0.0067 0.0817
PD-GBR_no_charge_pol | 0.9297 0.0528 0.0303 0.0067 0.0810
PD-GBR_no_FG 0.9269 0.0531 0.0298 0.0069 0.0826

Model analysis

Table S14 - Pairwise comparison of MAE of HCL, Sulfuric, Nitric and the remaining acid systems. Each
row tests the null hypothesis that the distribution of MAE is the same in both samples.

Samples Test Stat.  Std. Error Stg;:fﬂ Sig. Adj. Sig.
Other — HCI 49.752 16.599 2.997 0.003 0.016
Other — Sulfuric -56.005 17.843 -3.139 0.002 0.010
Other — Nitric 97.402 26.628 3.658 <0.001 0.002
HCI — Sulfuric -6.253 17.758 -0.352 0.725 1.000
HCl — Nitric -47.650 26.572 -1.793 0.073 0.438
Sulfuric — Nitric 41.397 27.365 1.513 0.130 0.782

Table S15 - Two-tailed significance (p-values) from Wilcoxon signed-rank tests comparing the MAE of
the base feature set versus the full feature set for each acid group.

Acid p-value
HCI 0.066
Sulfuric 0.932
Nitric 0.995
Other 0.016
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Table S16 - Pairwise comparison of MAE of low (< 0.3), middling (between 0.3 and 0.7) and high (= 0.7)
yield systems. Each row tests the null hypothesis that the distribution of MAE is the same in both
samples.

Std. Test

Samples Test Stat.  Std. Error Stat Sig. Adj. Sig.
y<0.3 -y>0.7 -48.664 17.996 -2.704 0.007 0.021
y<0.3 — 0.3<y<0.7 73.846 19.749 3.739 <.001 0.001
y>0.7 — 0.3<y<0.7 25.182 15.661 1.608 0.108 0.324

Table S17 - Pairwise comparison of MAE of prediction for systems containing different cathode
chemistries. Each row tests the null hypothesis that the distribution of MAE is the same in both samples.

Std. Test

Samples Test Stat.  Std. Error Stat Sig. Adj. Sig.
NMC811 — NMC333 54.009 20.972 2.575 0.010 0.060
NMC811 — Other -57.903 21.590 -2.682 0.007 0.044
NMC811 — NMC622 159.670 27.345 5.839 <.001 0.000
NMC333 — Other -3.894 15.691 -0.248 0.804 1.000
NMC333 - NMC622 -105.661 22.974 -4.599 <.001 0.000
Other — NMC622 101.767 23.539 4.323 <.001 0.000
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Figure S3 - Kinetics curves produced by the PD-GBR model for activation energy calculation
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Table S18 - Coefficients of determination (R2) for four kinetic models fitted to the leaching data of Li, Ni,

Mn, and Co using 2 M HCL, 50 g/L at 25 °C.

Model Li Ni Mn Co
Linear 0.8049 0.8563 0.8229 0.8207
SCM (chemical reaction control) 0.8292 0.8668 0.8300 0.8277
SCM (product layer diffusion control) | 0.8794 0.9339 0.8714 0.8863
SCM (film diffusion and chemical 09173 0.9420 0.8753 0.8963

reaction control)
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