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Data Sources  
This work was developed using leaching data from the publications in Table S1 and 
supplemented with our own unpublished data. 

Table S1 – Data sources organized by year of publication 

Authors Year Ref. 
Zhang et al. 1998 [1] 

Lee and Rhee 2002 [2] 
Wang et al. 2009 [3] 

Li et al. 2010 [4] 
Li et al. 2012 [5] 

Meshram et al. 2015 [6] 
He et al. 2017 [7] 

Gao et al. 2017 [8] 
Golmohammadzadeh et al. 2017 [9] 

Li et al. 2017 [10] 
Chen and Ho 2018 [11] 

Gao et al. 2018 [12] 
Xuan et al. 2019 [13] 
Chan et al. 2021 [14] 
Xuan et al. 2021 [15] 
Kim et al. 2022 [16] 

Guimarães et al. 2022 [17] 
Rouquette et al. 2023 [18] 

Jiang et al. 2023 [19] 
Vieceli et al. 2023 [20] 

Partinen et al. 2023 [21] 
Sahu and Devi 2023 [22] 
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Features 
Table S2 – Inventory of the features and respective units organized by category 

Category Source Feature Unit 

Reaction conditions Manual input 

inputNi - 
inputMn - 
inputCo - 

Temperature ºC 
Acid concentration mol/L 
H2O2 concentration wt.% 

Solid-liquid ratio g/L 
Time min 

Basic acid descriptors Manual input 
SMILES - 

Number of protons - 
pKa1 - 

Dissociation constants Manual input pKa2, pKa3  - 
Solubilities Manual input Li, Ni, Mn, Co salt solubility g/100mL 

Lipinski’s rule of five RDKit 

logP - 
TPSA Å2 

Number of HBD - 
Number of HBA - 

Molar weight g/mol 

Charge and polarisability RDKit 
Max partial charge - 
Min partial charge - 
Molar refractivity m3/mol 

Molecular structure and 
functional groups 

RDKit 

Carboxylic acid groups - 
C—O bonds - 

Primary amine groups - 
Tertiary amine groups - 

Halogen atoms - 
Aliphatic hydroxyl groups - 

Sulfur atoms - 
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Dataset Composition

 
Figure S1 – Distribution of acids in the dataset 

Hyperparameter optimization 
Model hyperparameters were optimized using the Optuna package. [23] Optuna follows a 
Bayesian optimization approach to eAiciently search the hyperparameter space. The 
parameters to optimize and the ranges to consider are specified in Table S3 of the ESI. The 
Optuna package uses Bayesian optimization to test hyperparameter combinations, 
considering previous optimization attempts to try to estimate the eAect of varying each of the 
hyperparameters, resulting in a more eAicient optimization than a traditional grid search, 
which iterates through all possible hyperparameter combinations. Each model was optimized 
in 20 to 100 trials. In each one, a specific hyperparameter combination is sampled from the 
ranges in Table S3. All parameters not mentioned were kept to the default, as implemented in 
the scikit-learn package. The performance of this configuration is evaluated using 5-fold cross 
validation, calculating the negative mean squared error (MSE) across the folds. The objective 
function of the optimization was to maximize the negative MSE for all models except ANN and 
PD-ANN, whose objective function was R2 maximization. Optuna’s MedianPruner was 
employed to accelerate this process, skipping unpromising trials based on intermediate 
results.   
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Table S3 – Hyperparameter optimization ranges for each of the models 

Model Hyperparameter Range 

RF 

Number estimators 10 to 500 
Max depth 2 to 32 (log scale) 
Min. samples split 2 to 20 
Min. samples leaf 2 to 10 

GBR 

Max. iterations 50 to 500 
Max. depth 2 to 10 
Min. samples leaf 3 to 10 
Learning rate 0.01 to 0.3 (log scale) 
Max. bins 64 to 255 
L2 regularization 10-6 to 10 (log scale) 
Max. leaf nodes 20 to 200 

ANN 

Alpha 10-5, 10-4, 10-3, 10-2, 10-1 
Hidden layer sizes 8, 16, 32, 64 
Activation Logistic, ReLU, tanh 
Learning rate Constant, adaptive 
Early stopping True, False 

PD-RF 

Number estimators 100 to 500 
Max. depth 10 to 32 (log scale) 
Min. samples split 2 to 10 
Min. samples leaf 2 to 10 

PD-GBR 

Max. iterations 50 to 500 
Max. depth 5 to 15 
Min. samples leaf  10 to 100 
Learning rate 0.01 to 0.3 (log scale) 
Max. bins 128 to 255 
L2 regularization 10-6 to 10 (log scale) 
Max. leaf nodes 50 to 500 

PD-ANN 

Alpha 10-5, 10-4, 10-3, 10-2, 10-1 
Hidden layer sizes 16, 32, 64, 128, 256 
Activation Logistic, ReLU, tanh 
Learning rate Constant, adaptive 
Early stopping True, False 
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Performance metrics 
Table S4 – Summary of the performance metrics used for model evaluation. 𝑦!  – experimental value for 
𝑖-th observation; 𝑦#!  – predicted value for 𝑖-th observation; 𝑦$ – average of the experimental values; 𝑛 – 
number of observations. 

Performance metrics Equation 

CoeAicient of determination (R²) 𝑅! =
∑ (𝑦" − 𝑦'")!#
"$%

∑ (𝑦" −	𝑦*)!#
"$%

 

Mean absolute error (MAE) 𝑀𝐴𝐸 =
1
𝑛
0 |𝑦" − 𝑦'"|

#

"$%	
 

 
Median absolute error (MedAE) 𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦" − 𝑦'"|) 

Mean squared error (MSE) 𝑀𝑆𝐸 =
1
𝑛
0 (𝑦" − 𝑦'")!

#

"$%	
 

Root mean squared error (RMSE) 𝑅𝑀𝑆𝐸 = 8
1
𝑛
0 (𝑦" − 𝑦'")!

#

"$%	
 

 

Environmental impact categories 
Table S5 – Environmental impact categories and units from the Environmental Footprint 3.1 method. 

Impact category Unit 
Acidification mol H+ eq 
Climate change kg CO2 eq 
Climate change - Biogenic kg CO2 eq 
Climate change - Fossil kg CO2 eq 
Climate change - Land use and LU change kg CO2 eq 
Ecotoxicity, freshwater CTUe 
Particulate matter disease inc. 
Eutrophication, marine kg N eq 
Eutrophication, freshwater kg P eq 
Eutrophication, terrestrial mol N eq 
Human toxicity, cancer CTUh 
Human toxicity, non-cancer CTUh 
Ionising radiation kBq U-235 eq 
Land use Pt 
Ozone depletion kg CFC11 eq 
Photochemical ozone formation kg NMVOC eq 
Resource use, fossils MJ 
Resource use, minerals and metals kg Sb eq 
Water use m3 depriv. 
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Technical economic analysis 
Table S6 – Bulk acid prices used to calculate reagent costs. A conversion rate of 1 USD to 0.88 EUR was 
considered. 

Acid Price (€/kg) Purity Location Date Source 
Nitric 0.3934 67% Germany Q1 2025 ChemAnalyst [24] 

Sulfuric 0.1170 98% Germany Q1 2025 IMARC Group [25]  
Acetic 0.6160 99% Germany Q1 2025 ChemAnalyst [26] 
Formic 0.7172 99% Germany Q1 2025 ChemAnalyst [27] 

HCl 0.1443 36% Germany Q1 2025 ChemAnalyst [28] 
Citric 1.2056 99% France Q1 2025 IMARC Group [29] 
Oxalic 0.6336 98% Germany Q2 2024  ChemAnalyst [30] 

Ascorbic 2.8600 99% Germany Q1 2025 IMARC Group [31] 
Lactic 1.1792 90% Germany Q2 2024 ChemAnalyst [32] 

Tartaric 1.8656 95% Germany Q2 2024 ChemAnalyst [33] 
Malic 1.7855 99% Netherlands Q3 2024 ChemAnalyst [34] 

Levulinic 25.2800 97% NA Q2 2025 Sigma-Aldrich [35] 
 

Table S7 – Miscellaneous parameters used to calculate the heating and mixing costs of the acid slurry 

Cost factor Value Unit Source 
Power 0.1899 €/kWh [36] 
Mixing 2.00 kW/m3 [37] 
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Training set description 
Table S8 – Descriptive statistics of the training set features 

Feature Min Max Average Mode Median 
inputNi 0.00 0.90 0.36 0.33 0.33 
inputMn 0.00 2.00 0.25 0.33 0.30 
inputCo 0.00 1.00 0.40 0.33 0.33 

T (°C) 20.00 95.00 58.50 50.00 60.00 
pKa1 -8.00 4.76 -2.89 -8.00 -3.00 
pKa2 0.00 11.70 1.26 0.00 0.00 
pKa3 0.00 6.40 0.17 0.00 0.00 

Mracid 36.46 192.12 72.68 36.46 63.01 
Protonsacid 1.00 3.00 1.40 1.00 1.00 

[Acid] (mol/L) 0.05 8.00 2.44 1.00 2.00 
[H2O2] (wt.%) 0.00 21.00 0.71 0.00 0.00 

S/L (g/L) 2.00 333.30 39.60 20.00 25.00 
Time (min) 0.00 4320.00 141.60 60.00 60.00 

sLi (g/100ml) 0.00 83.50 52.60 83.50 40.80 
sNi (g/100ml) 0.00 94.20 46.10 66.80 44.40 
sMn (g/100ml) 0.00 139.00 61.00 73.90 70.00 
sCo (g/100ml) 0.00 97.40 40.40 52.90 38.00 

 

Table S9 – Descriptive statistics of the training set targets 

Target Min Max Average Mode Median 

xLi 0.00 1.00 0.78 1.00 0.84 
xNi 0.00 1.00 0.64 1.00 0.66 
xMn 0.00 1.00 0.58 1.00 0.55 
xCo 0.00 1.00 0.57 1.00 0.52 

 

Model selection 
Table S10 – Average training statistics for each of the models. The full set of features was considered. R2 
– CoeUicient of determination, MAE – mean absolute error, MedAE – median absolute error, MSE – mean 
square error, RMSE – root mean square error. 

Model R2 MAE MedAE MSE RMSE 
RF_full 0.8878 0.0652 0.0449 0.0089 0.0943 

GBR_full 0.9578 0.0371 0.0221 0.0034 0.0580 
ANN_full 0.7108 0.1169 0.0892 0.0247 0.1567 

PD-GBR_full 0.9966 0.0084 0.0054 0.0003 0.0165 
PD-ANN_full 0.9462 0.0469 0.0357 0.0041 0.0637 
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Figure S2 – Comparison of experimental yields with the predictions output by the RF, GBR, ANN, PD-
ANN and PD-GBR models. 
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Feature selection 
Table S11 – List of the model-feature pairs considered for this study and the features that each one 
includes. Fields marked with an asterisk (*) denote that missing values were filled in with the median 
value for that feature.  

Model ID Basic pKa2, 
pKa3 

Solubilities Lipinski Charge Functional 
groups 

RF_Full X X X X X X 
GBR_full X X X X X X 
ANN_full X X* X* X X X 

PD-GBR_full X X X X X X 
PD-ANN_full X X* X* X X X 

ANN_no_pka_sol X   X X X 
PD-ANN_no_pka_sol X   X X X 

PD-GBR_base X      
PD-GBR_pka_sol X X X    
PD-GBR_no_pka X  X X X X 
PD-GBR_no_sol X X  X X X 

PD-GBR_no_lipinski X X X  X X 
PD-GBR_no_charge_pol X X X X  X 

PD-GBR_no_FG X X X X X  
 

Table S12 – Training statistics for each of the model-feature set pairs. R2 – CoeUicient of determination, 
MAE – mean absolute error, MedAE – median absolute error, MSE – mean square error, RMSE – root mean 
square error. 

Model R2 MAE MedAE MSE RMSE 
RF_full 0.8878 0.0652 0.0449 0.0089 0.0943 

GBR_full 0.9578 0.0371 0.0221 0.0034 0.0580 
ANN_full 0.7108 0.1169 0.0892 0.0247 0.1567 

PD-GBR_full 0.9966 0.0084 0.0054 0.0003 0.0165 
PD-ANN_full 0.9462 0.0469 0.0357 0.0041 0.0637 

ANN_no_pKa_sol 0.7432 0.1088 0.0824 0.0212 0.1457 
PD-ANN_no_pKa_sol 0.9677 0.0362 0.0261 0.0026 0.0508 

PD-GBR_base 0.9898 0.0192 0.0132 0.0009 0.0293 
PD_GBR_pKa_sol 0.9970 0.0072 0.0046 0.0002 0.0155 
PD-GBR_no_pKa 0.9951 0.0121 0.0083 0.0004 0.0201 
PD-GBR_no_sol 0.9727 0.0338 0.0243 0.0023 0.0479 

PD-GBR_no_lipinski 0.9915 0.0172 0.0117 0.0007 0.0266 
PD-GBR_no_charge_pol 0.9964 0.0091 0.0060 0.0003 0.0171 

PD-GBR_no_FG 0.9965 0.0083 0.0052 0.0003 0.0167 
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Table S13 – Test statistics for each of the model-feature set pairs. R2 – CoeUicient of determination, MAE 
– mean absolute error, MedAE – median absolute error, MSE – mean square error, RMSE – root mean 
square error. 

Model R2 MAE MedAE MSE RMSE 
RF_full 0.8026 0.0963 0.0741 0.0181 0.1344 

GBR_full 0.9137 0.0617 0.0411 0.0081 0.0896 
ANN_full 0.6840 0.1319 0.1036 0.0306 0.1737 

PD-GBR_full 0.9332 0.0513 0.0283 0.0063 0.0787 
PD-ANN_full 0.8044 0.0933 0.0636 0.0180 0.1336 

ANN_no_pKa_sol 0.6922 0.1275 0.0977 0.0289 0.1696 
PD-ANN_no_pKa_sol 0.7978 0.0928 0.0621 0.0190 0.1373 

PD_GBR_base 0.9222 0.0566 0.0341 0.0072 0.0847 
PD_GBR_pKa_sol 0.9282 0.0527 0.0274 0.0066 0.0811 
PD-GBR_no_pKa 0.9265 0.0527 0.0281 0.0068 0.0824 
PD-GBR_no_sol 0.9226 0.0605 0.0447 0.0073 0.0851 

PD-GBR_no_lipinski 0.9296 0.0541 0.0330 0.0067 0.0817 
PD-GBR_no_charge_pol 0.9297 0.0528 0.0303 0.0067 0.0810 

PD-GBR_no_FG 0.9269 0.0531 0.0298 0.0069 0.0826 
 

Model analysis 
Table S14 – Pairwise comparison of MAE of HCl, Sulfuric, Nitric and the remaining acid systems. Each 
row tests the null hypothesis that the distribution of MAE is the same in both samples. 

Samples Test Stat. Std. Error Std. Test 
Stat. Sig. Adj. Sig. 

Other – HCl 49.752 16.599 2.997 0.003 0.016 
Other – Sulfuric -56.005 17.843 -3.139 0.002 0.010 
Other – Nitric 97.402 26.628 3.658 < 0.001 0.002 
HCl – Sulfuric -6.253 17.758 -0.352 0.725 1.000 
HCl – Nitric -47.650 26.572 -1.793 0.073 0.438 

Sulfuric – Nitric 41.397 27.365 1.513 0.130 0.782 
 

Table S15 – Two-tailed significance (p-values) from Wilcoxon signed-rank tests comparing the MAE of 
the base feature set versus the full feature set for each acid group. 

Acid p-value 
HCl 0.066 

Sulfuric 0.932 
Nitric 0.995 
Other 0.016 
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Table S16 – Pairwise comparison of MAE of low (< 0.3), middling (between 0.3 and 0.7) and high (> 0.7) 
yield systems. Each row tests the null hypothesis that the distribution of MAE is the same in both 
samples. 

Samples Test Stat. Std. Error Std. Test 
Stat. Sig. Adj. Sig. 

y<0.3 – y>0.7 -48.664 17.996 -2.704 0.007 0.021 
y<0.3 – 0.3<y<0.7 73.846 19.749 3.739 <.001 0.001 
y>0.7 – 0.3<y<0.7 25.182 15.661 1.608 0.108 0.324 

 

Table S17 – Pairwise comparison of MAE of prediction for systems containing diUerent cathode 
chemistries. Each row tests the null hypothesis that the distribution of MAE is the same in both samples. 

Samples Test Stat. Std. Error Std. Test 
Stat. Sig. Adj. Sig. 

NMC811 – NMC333 54.009 20.972 2.575 0.010 0.060 
NMC811 – Other -57.903 21.590 -2.682 0.007 0.044 
NMC811 – NMC622 159.670 27.345 5.839 <.001 0.000 
NMC333 – Other -3.894 15.691 -0.248 0.804 1.000 
NMC333 – NMC622 -105.661 22.974 -4.599 <.001 0.000 
Other – NMC622 101.767 23.539 4.323 <.001 0.000 

 

 

 

Figure S3 – Kinetics curves produced by the PD-GBR model for activation energy calculation 
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Table S18 – CoeUicients of determination (R2) for four kinetic models fitted to the leaching data of Li, Ni, 
Mn, and Co using 2 M HCl, 50 g/L at 25 °C. 

Model Li Ni Mn Co 
Linear 0.8049 0.8563 0.8229 0.8207 

SCM (chemical reaction control) 0.8292 0.8668 0.8300 0.8277 
SCM (product layer diAusion control) 0.8794 0.9339 0.8714 0.8863 

SCM (film diAusion and chemical 
reaction control) 0.9173 0.9420 0.8753 0.8963 
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