
Green Chemistry

PAPER

Cite this: DOI: 10.1039/d5gc04752h

Received 10th September 2025,
Accepted 17th November 2025

DOI: 10.1039/d5gc04752h

rsc.li/greenchem

An applied machine learning framework for waste
lithium-ion battery leaching with integrated
preliminary environmental and economic
assessment

André Nogueira, a Filipe H. B. Sosa, a Ana C. Dias,b João A. P. Coutinho a and
Nicolas Schaeffer *a

Technological innovation has led to the widespread adoption of lithium-ion batteries (LIBs) for portable

energy storage. Correspondingly, sustainable solutions to end-of-life battery disposal are crucial to

manage their growing volume. Beyond their potentially hazardous nature, waste LIBs contain several

economically relevant critical raw materials such as lithium, manganese and cobalt. However, their recov-

ery by hydrometallurgical approaches often relies on the excessive use of corrosive solutions during the

leaching steps, negatively impacting the atomic efficiency, effluent treatment, and cost of the process.

Despite numerous studies on the topic, identifying optimal leaching conditions is challenging given the

variety of available battery chemistries and leaching agents, compounded by economic and environ-

mental concerns. This work presents a methodical, data-driven approach to model the leaching of key

metals from oxide-based LIB cathode active materials using machine learning algorithms, implementing

pairwise difference algorithms for data augmentation. The developed model underwent thorough evalu-

ation and screening, and its output is integrated to compute a simplified economic and environmental

assessment, accounting for key performance indicators such as heating requirements, solvent cost, and

environmental impact, thereby enabling an agile screening of potential preliminary leaching conditions.

The methodology described herein is an important step in integrating emerging computational tools in

the development of novel, greener metal recycling processes.

Green foundation
1. This work introduces a machine learning (ML) framework to optimize the recycling of lithium-ion batteries (LIBs). This data-driven approach aims to
reduce the excessive use of harmful chemicals in the leaching step of hydrometallurgical battery recycling. The key advance is an integrated toolkit that com-
bines leaching yield prediction with preliminary economic and environmental assessment tools, enabling more agile screening and development of greener
and more efficient metal recycling processes.
2. The contribution to green chemistry takes the form of the “LIB Leaching Toolkit”, a software tool that integrates ML-powered leaching yield prediction
with a qualitative economic and environmental assessment tools for a more holistic approach to process design. The underlying model showed strong predic-
tive performance, with a coefficient of determination of 0.933 on unseen test data.
3. This work can be advanced by expanding the dataset to include more varied cathode chemistry data and, crucially, data on the contaminants present in
real waste battery streams. This would improve the applicability of the toolkit to real-world scenarios, highlighting its potential for use in a digital twin
setting for more informed process design and control.

1. Introduction

The proliferation of lithium-ion batteries (LIB) across indus-
tries and applications, from portable electronics to electric

vehicles and grid storage, implies the need to develop efficient
and sustainable end-of-life solutions. However, LIB cathode
chemistry is highly varied: ternary battery cathodes, containing
lithium, nickel, manganese and cobalt oxide, represent around
58% of the entire market; lithium iron phosphate-based cath-
odes have another 32%. The remaining around 10% are com-
posed of lithium manganese oxide, lithium manganese nickel
oxide and nickel cobalt aluminum battery cathodes.1

Additionally, each of those chemistries multiply into several
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variations as the battery cathode materials are developed and
tuned for specific purposes. This inherent variability is often
compounded during collection and initial processing, where
different battery types are processed together, often without
adequate sorting. Legislation was proposed to the European
Parliament and the Council of the European Union to improve
battery labelling, including the use of QR codes to provide con-
sumers and operators with better information. However, with
some of these measures not taking full effect until 2027, there
is a pressing need to improve the recycling of batteries already
in circulation.2

The recycling of valuable and critical materials like lithium,
nickel, manganese, cobalt and graphite present in LIB is a key
step in reducing the environmental footprint of battery pro-
duction by introducing a circular economy for these materials.
Different possible avenues for LIB recycling, including pyrome-
tallurgy, hydrometallurgy, biometallurgy, direct recycling, or a
combination of options, are reported for LIB recycling.3

Hydrometallurgy is projected to remain the most common
battery cathode recycling process, accounting for 90% of
global capacity in 2030, due to its high yields, favorable econ-
omics and flexibility in handling different cathode chemistries
and waste streams.4 Hydrometallurgy hinges on using leaching
agents, usually aqueous solutions containing strong chemical
oxidizers, to leach metals from the active material. Metals are
then recovered from the pregnant solution through precipi-
tation, deposition, solvent extraction or other separation
methods. Hydrometallurgical processes can offer high
efficiency and purity in metal recovery, from battery waste.5

However, careful process optimization is essential to minimize
the drawbacks of this approach. The leaching step directly
affects any downstream separation processes and is typically
associated with the largest chemical consumption, incurring
significant environmental impact. Leaching inherently leads to
large wastewater and carbon dioxide emissions, as much as
6.6 kg of wastewater and 42 kg of carbon dioxide per electric
vehicle cell.6 Generated wastewater may contain heavy metals,
sodium, phosphate, and sulphates, all of which carry signifi-
cant environmental impact.6 From an economic perspective,
hydrometallurgical processes typically involve the use of excess
quantities of reagents, implying potentially high operating
costs. Furthermore, high purity recovery of critical materials
from waste remains a challenge due to the costly separation
processes needed to separate the transition metals after leach-
ing. These aspects make careful consideration of the leaching
step even more important to facilitate downstream recovery.7

The combined heterogeneity in feedstock and processing path-
ways requires the need for flexible recycling operations in
which optimal leaching conditions can be quickly screened
and adapted as new needs arise, bypassing experimental re-
optimization and excessive chemical requirements.

Machine-learning (ML) techniques offer a way to overcome
the limitations of first-principles chemical models, leveraging
data-driven approaches to model complex patterns and predict
leaching performance of real-world waste streams. This tran-
sition from first principles to a data-driven philosophy is

especially relevant for application to variable real-world waste,
where a complete mechanistic understanding of the chemical
processes at play is often impractical. Additionally, flexible and
robust computational modeling of leaching processes enables
real-time tuning and optimization, maximizing yield while
minimizing environmental impact and cost. ML is a useful
tool for the optimization of processes, covering the LIB value-
chain from manufacturing to recycling.8,9 The manufacture of
LIB is highly sensitive to variations in process parameters,
which will directly influence cell performance. Duquesnoy
et al.10,11 used physics-based and ML models to predict ideal
manufacturing parameters to produce electrodes for specific
battery applications. ML approaches were also utilized to
improve the performance and longevity of LIB.12 Additionally,
significant efforts were directed towards the development of
ML-based battery life models to optimize battery charging
and use.13

More recently, ML techniques were identified to improve
e-waste recycling processes, extending beyond the manufacture
to the disposal of LIB. Zhou14 developed a ML model that
pairs machine vision with convolutional neural networks to
achieve high accuracy classification of mixed e-waste into
different categories, helping to overcome one of the major
challenges of e-waste recycling. Continuing the recycling
process, works by Ebrahimzade et al.15 and Niu et al.16 used
different ML approaches to successfully model the leaching of
LIB, addressing another aspect of the battery recycling
problem by being able to predict leaching efficiency from
experimental conditions. However, both approaches have
limitations in how they model the chemical systems. The first
is highly specific, supporting exclusively sulfuric acid and
hydrogen peroxide. This narrow focus means its predictions
are not applicable to other leaching agents. While the model
developed by Niu et al.16 is broader, its chemical descriptors
for the acids are limited to the first dissociation constant of
each one. This simplification tries to represent a complex
chemical system using a single value, which cannot fully
capture acid structure, multiple deprotonations, and others.
Recent work by Zhou et al.17 showcases the thorough develop-
ment of a methodology for the efficient development of deep
eutectic solvents (DES) for LIB cathode leaching. Their
approach allows for the rapid identification of new solvents
using ML models, enabling significantly more targeted screen-
ing of leaching agents thank traditional trial-and-error
methods.

Looking beyond LIB leaching to other hydrometallurgical
leaching applications, ML models were successfully applied to
capture the leaching performance of copper from various
minerals.

Table 1 summarizes previous studies that have used ML
algorithms for leaching modelling, highlighting their specific
applications. However, existing research focuses on predictive
accuracy for the metal leaching step in isolation, neglecting to
showcase its potential when integrated into broader oper-
ational frameworks. Embedded within systems that enable
simulation, optimization and technical-economic-environ-
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mental analysis, ML models can act as predictive engines,
simulating process outcomes under different feedstock and
operating conditions therefore enabling more informed
process design and control.

A significant hurdle to the broader integration of ML
tools is the scarcity of readily available, high-quality data. A
smaller dataset limits the kinds of models that can be used,
support vector machines, gradient boosting algorithms and
random forests being reported as particularly well suited to
data-restricted datasets.22 However, the use of more data-
hungry methods may still be possible by using data aug-
mentation techniques. One example of this approach is the
pairwise difference (PD) algorithm described by Tynes
et al.23 to improve prediction and uncertainty quantification
in chemical search. This meta-algorithm operates on pairs
of data points. During training, the model learns to predict
differences between all possible pairs of input points. For
prediction, test points are paired with all training set
points, generating a set of predictions that can be treated as
a distribution where the mean is the final prediction, and
the dispersion serves as an uncertainty measure. This
approach has been shown to reliably improve the perform-
ance of the random forest algorithm across various chemical
ML tasks.23

In this work, ML approaches were used to model the leach-
ing of Li, Mn, Ni and Co from oxide-based LIB cathode
material using a range of organic and inorganic acids. Data
was collected by surveying published articles on LIB recycling
and/or available data from our laboratory. Experimental con-
ditions and yields were compiled and formatted for consist-
ency. Previously reported approaches were compared with
models that exploit pairwise differences (PD) algorithms for
data augmentation. Then, we demonstrate how these models
can be integrated into a simplified techno-economic and
environmental impact assessment tool, thus allowing for rapid
screening and optimization of leaching conditions. The best-
performing model was integrated into a Python application,
the “LIB Leaching Toolkit” and performance was assessed
using two case studies. This framework enables not only pre-
dicting leaching efficiency, but also considering economic and
environmental implications, showcasing more flexible, data-
driven models potentially deployable within a digital twin or
process development context.

2. Methodology
2.1. Data collection and formatting

A total of 718 data points were manually extracted from 22
different articles published between 1998 and 2023 on the
leaching of oxide-based black mass material as detailed in
Table S1.24–45 Tabulated data was copied directly when avail-
able, whereas plots were processed to extract relevant data:
reaction conditions (cathode composition, temperature, acid
kind, acid and hydrogen peroxide concentration, solid to
liquid ratio and reaction time) and leaching yields (Li, Ni, Mn
and Co yield, standard). Literature data was supplemented
with unpublished work from the REVITALISE project consor-
tium (https://revitalise-project.eu/), making a total set of 913
leaching data points, each containing a set of reaction con-
ditions and the leaching yields for Li, Ni, Mn and Co. The
selected features correspond to the most common leaching
parameters across the surveyed literature, and all represent
easily controllable factors at a laboratory scale.

The composition of the LIB cathodes was standardized
using the Ni : Mn : Co molar ratio as it is defined in the
common general formula for ternary LIB cathodes—
LiNixMnyCo1−x−yO2. These values were normalized such that
the sum of the Ni, Mn and Co content was equal to 1. Hence,
the LIB composition may be characterized by three variables,
inputNi, inputMn, and inputCo. For example, NMC111, con-
taining equimolar amounts of all three metals, is represented
as inputNi = inputMn = inputCo = 0.33. The reaction con-
ditions themselves were described using five parameters:
leaching temperature in °C, acid concentration in mol L−1,
hydrogen peroxide concentration in wt%, solid-to-liquid ratio
in g L−1 and sampling time in minutes.

A comprehensive set of molecular descriptors was employed
to represent the different acids in the dataset. These included
properties such as the acid dissociation constants (pKa) and
the number of available protons. Whenever available, the solu-
bility product (KSP) of the corresponding lithium, nickel,
manganese and cobalt salts in water at 20 °C were also
included as direct inputs. Additionally, other molecular
descriptors were dynamically retrieved from the SMILES string
of each acid using the RDKit package.46 A complete overview
of the features is available in Table S2 of the SI. This expanded
representation, although increasing complexity, provides a

Table 1 Machine learning algorithms applied to metal leaching. ANN: artificial neural network, XGB: XGBoost (eXtreme gradient boosting), RF:
random forest, SVM: support vector machine, AdaBoost: adaptive boosting, CGAN: conditional generative adversarial networks, MLR: multiple linear
regression, DT: decision tree, GBR: gradient boosting regressor

Ref. Models Use Leaching agent Best # Points

Ebrahimzade et al.15 ANN Leaching from waste LIBs H2SO4 + H2O2 ANN 685
Niu et al.16 XGB, RF, SVM, AdaBoost Leaching from waste LIBs 25 different acids XGB 17 588
Zhou et al.17 CGAN DES discovery for LIB leaching DES CGAN 791
Zhang et al.18 MLR, SVM, DT, RF, ANN, GBR Pyrolusite leaching H2SO4 + FeSO4 SVM 304
Mathaba and Banza19 ANN Co and Cu leaching H2SO4 ANN 32
Flores and Leiva20 RF, SVM, ANN Cu leaching H2SO4 ANN 15 581
Daware et al.21 RF, GBR, SVM, XGB, AdaBoost Cu leaching from PCBs Acids with pKa between 6 and 3 GBR 1320
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more comprehensive description of each acid’s behavior com-
pared to previous approaches, which have primarily only used
the acid concentration and first dissociation constant.16 This
improved representation aims to improve the modelling per-
formance of lesser-represented acids and the overall generaliz-
ability of the models.

The compiled leaching data contains 12 different organic
and inorganic acids. To allow for appropriate modelling, it was
necessary to encode the acid type into a numeric value. The
first dissociation constant was chosen for its availability for all
the acids of interest. However, picking a single number to
differentiate between acids is a simplified approach, limiting
the generalization potential of the models, particularly as it
fails to differentiate between mono-, di- and tri-protic acids.
This limitation was overcome by using the three first dis-
sociation constants, when available, as well as through using
other molecular descriptors. Fig. S1 displays the distribution
of acids in the working dataset, revealing a pronounced bias
towards hydrochloric and sulfuric acids, which collectively
account for over 65% of the data points.

2.2. Batch leaching

Batch experiments were set up in 3 mL glass vials, into which
1 mL of preheated acid was added to an appropriate amount
of LiNixMnyCo1−x−yO2 cathode powder. Stirring was main-
tained at 500 RPM throughout. Temperature was controlled
using a preheated metal block into which the vials are
inserted. After the leaching time elapsed, the vial was removed
from heating and its contents centrifuged at 12 000 rpm for
2 minutes. The leachate was decanted, and the solid residue
washed with deionized water several times before drying in a
50 °C oven overnight.

A complete digestion of the cathode active material was
done using 4 M HCl to enable yield computation. The concen-
tration of lithium was measured using a Mettler Toledo
DX207-Li ISE half-cell electrode. Quantification of Ni, Mn and
Co in solution was performed using a Bruker S2 Picofox Total
Reflection X-ray Fluorescence (TXRF) spectrometer, equipped
with a molybdenum X-ray source. The analysis was performed
at a voltage of 50 kV and a current of 600 μA. Quartz sample
carriers were pre-coated with 10 μL of a solution of silicon in
isopropanol (SERVA) and dried at 323 K. Samples were diluted

in a 1 wt% polyvinyl alcohol solution and spiked with a known
concentration of yttrium standard, adjusted to the metal
content of the samples. 10 μL of the diluted and spiked
samples were transferred to the preheated carriers and dried
at 353 K. TXRF measurement was carried out for 300 s.

2.3. Model training and implementation

The simplified data flow chart in Fig. 1 outlines the systematic
approach to data partitioning and model training. The data
was randomly split into a test set, containing 15% (or 137
points), and a training set, containing the remaining 85% (776
points). The test set was only used to assess and compare the
models against each other, ensuring the assessment was made
with data that are not embedded in the models. Each of the
models were fitted onto the training data using 5-fold cross-
validation. Hyperparameter optimization for each of the
models was done using the optuna package as described
below. The trained models were then used to predict leaching
yields of the test data set and compute fit and error statistics.

Random forest (RF), gradient boosting regression (GBR)
and multilayer perceptron (ANN) models were implemented in
Python 3.12.3 using the scikit-learn package version 1.5.1.47

The optuna package was used to perform Bayesian optimiz-
ation of the model hyperparameters instead of a conventional
grid search methodology. By sampling within the ranges avail-
able in Table S3 of the SI, the optimization algorithm is able
to estimate the impact of varying each of the hyperparameters
to enable a more targeted and efficient optimization.48 A
detailed description of the hyperparameter optimization is
described in the “Hyperparameter optimization” section of the
SI. Model selection was performed using the entire set of fea-
tures under consideration, detailed in Table S2. The models
were first compared using performance metrics such as the
coefficient of determination (R2), mean absolute error (MAE),
median absolute error (MedAE), mean squared error (MSE)
and root mean squared error (RMSE). Equations for these
metrics are available in Table S4 of the SI.

Further analysis and selection of the models involved per-
forming several statistical tests. An independent-samples
Kruskal–Wallis test was used to identify significant differences
in the mean absolute error (MAE) between groups (different
acids, cathode chemistries, yield ranges). When significant

Fig. 1 Simplified data flow chart for model training and selection.
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differences were found, pairwise Dunn’s tests were then per-
formed to identify the source of these differences.
Additionally, Wilcoxon signed-rank tests were conducted to
assess if more complete feature sets were significantly better
performing than a base set of features.

The optimized scikit-learn models were compressed into .
gz files using joblib 1.4.2 for easier distribution and deploy-
ment. The code for this project is archived on Zenodo at
https://doi.org/10.5281/zenodo.16096943.

2.4. LIB leaching toolkit

The optimized model was integrated into a simple application,
coined LIB Leaching Toolkit, developed using Python 3.12.3. A
graphical user interface was implemented using tkinter. The
environmental impact metrics are based on those available on
the Ecoinvent 3.9.1 database, as listed in Table S5 of the SI.49

To utilize these metrics, users must supply their own licensed
Ecoinvent data, as it is not distributed with the toolkit. A com-
plete list of packages is available on this project’s Zenodo.

The general flow of data within the LIB Leaching Toolkit
application is depicted in Fig. 2.

Fig. 2 Diagram showing the general flow of data within the LIB Leaching Toolkit application.

Fig. 3 Sample data generation within LIB Leaching Toolkit.
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The first step of the LIB Leaching Toolkit is loading the pre-
trained PD-GBR model, the training data (required for apply-
ing the PD method) and the ‘sample data’, containing the
leaching scenarios for which yields will be calculated. The
sample data can be generated using the toolkit’s built-in tool
(as illustrated in Fig. 3), which allows for varying a single para-
meter across a range of custom, evenly spaced values while
holding others constant. Alternatively, users can create sample
data by editing a provided template spreadsheet.

The feature set is then expanded by applying the PD algor-
ithm to generate all pairwise feature combinations between
the training and sample data. The toolkit then computes pre-
dictions for the average and standard deviation of extraction
yields for Li, Ni, Mn and Co. The results are stored as a Pandas
DataFrame object and exported as a spreadsheet.

Having estimated the extraction yields, the toolkit computes
a mass balance to determine the required reagents for the
leaching process. All calculations are based on 1000 kg of LIB
cathode material. The process begins by calculating the total
volume of the diluted acid solution required for a given solid-
to-liquid ratio. From this volume and the specified acid con-
centration (mol L−1), the total moles of acid are determined.
The mass of pure acid is then calculated using its molar mass,
which is subsequently adjusted to find the required mass of
the concentrated stock solution by accounting for its purity.
Finally, the volume of water needed for dilution is calculated
by subtracting the volume of the concentrated acid from the
total volume of the prepared leaching solution. The results are
stored in a Pandas DataFrame for further analysis and
manipulation.

Following mass balance calculations, the toolkit performs a
simplified economic assessment to estimate the costs associ-
ated with each leaching scenario. This includes estimates of
the reagent costs as well as the energy needs for heating and
mixing, detailed in Tables S6 and S7 of the SI. Other factors
like equipment sizing and cost, solvent recovery, and waste-
water treatment were omitted to enable a more flexible yet sim-
plified approach that can be more broadly applicable. The
reagent cost is calculated directly from the mass of concen-
trated acid determined in the mass balance, multiplied by its
bulk price. The heating cost is estimated by calculating the
energy (in kWh) required to raise the temperature of the calcu-
lated volume of water from an assumed ambient temperature
of 25 °C to the specified reaction temperature, using the
specific heat capacity of water. The mixing energy is calculated
based on the total slurry volume (liquid + solids), a defined
mixing power requirement (in kW m−3), and the total reaction
time. Both heating and mixing energy requirements are con-
verted to a monetary cost using a fixed price per kWh. To
enable a comparison between different leaching strategies, the
costs are normalized by the total mass of Li, Ni, Mn, and Co
recovered (calculated using the predicted yields), providing a
final metric in euros per kg of metal leached. Economic assess-
ment is essential for evaluating the financial viability of
different approaches. Even a simplified analysis allows for pre-
liminary comparison and selection of leaching conditions.

Using the yields and mass balance results, the toolkit can
perform a simplified environmental impact assessment. The
amount of acid used in each scenario is multiplied by a set of
environmental impact assessment parameters, commonly
available in life-cycle assessment (LCA) databases such as
Ecoinvent. These parameters quantify the potential environ-
mental impacts associated with the production of acids con-
sidered in this study: acetic acid, ascorbic acid, citric acid,
formic acid, hydrochloric acid, lactic acid, nitric acid, oxalic
acid, and sulfuric acid. The impact metrics aim to capture the
impacts on climate change, broader ecosystem and human
health effects, and resource use. It is important to note that
the parameters provided are only illustrative examples and
should be updated by the user with relevant LCA data for their
specific context. Environmental impact assessment provides
valuable insights into the sustainability of leaching processes.
By integrating this assessment, the toolkit places environ-
mental considerations at the core of process development.

Finally, the toolkit facilitates a comparative analysis of leach-
ing scenarios. This is achieved by performing pairwise t-tests to
determine statistical differences between leaching conditions.
These enable the user to identify which variations in process
parameters lead to significant changes in leaching performance.
Paired with environmental and cost data, this becomes an invalu-
able tool to minimize cost and environmental impact. The toolkit
also calculates selectivities and enrichment factors to aid process
tuning and selection. The toolkit provides visualization tools in
the form of scatter and bar plots and heatmaps and allows export-
ing results as spreadsheets and image files, exemplified in Fig. 4.
These visualizations allow intuitive interpretation of the data in
formats that researchers and engineers are familiar with, once
again bridging the gap between computer and chemical engineer-
ing and process development.

2.5. Case studies

To illustrate the robustness and use of the integrated frame-
work, three case studies were conducted. The first assesses the
performance of the PD-GBR model, using predicted yields at
different temperatures to estimate the activation energy for
each metal and compare it with literature values. The second
presents the techno-economic and environmental impact ana-
lysis capabilities of the toolkit. The LIB Leaching Toolkit was
utilized to predict leaching yields and estimate economic and
environmental impacts. All tests in this scenario were per-
formed with fixed experimental conditions: NMC111 cathode,
40 °C, 50 g L−1, 60 minutes and an acid concentration of 1 mol
L−1. Environmental and economic impacts were calculated
based on the processing of 1000 kg of cathode. The final case
study investigates the model’s ability to extrapolate metal
leaching to leaching agents not in the original dataset and
compare them with experimental data. Experimental con-
ditions were set at NMC111 cathode, 65 °C, 50 g L−1,
60 minutes leaching and 2 mol L−1. Acid solutions were pre-
pared by diluting the appropriate amount of acid using de-
ionized water. The acids used were hydrochloric acid (37%)
and phosphoric acid (≥85%) from Honeywell, methanesulfo-
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nic acid (≥99.5%) and glycine (≥98.5%) from Sigma-Aldrich,
glutaric acid (99%) from Aldrich, and oxalic acid (98%) from
Alfa Aesar.

3. Discussion
3.1. Input data analysis

Prior to modelling the leaching data, initial analysis focused
on examining the distribution of the input features and leach-
ing targets and identifying potential biases and limitations in
the dataset. Basic descriptive statistics of the features are avail-
able in Table S8. The mode is especially informative for under-
standing feature distribution. Notably, the modal values for
inputNi, inputMn and inputCo align with a 1 : 1 : 1 ratio,
characteristic of NMC111, and the modal acid type corres-
ponds to a pKa1 of −8.0 – hydrochloric acid (HCl). This
suggests a strong bias towards NMC111 leaching with HCl
within the dataset. Additionally, the close agreement between
the average and mode of inputNi, inputMn and inputCo
reinforces the potential overrepresentation of NMC111 com-
pared to other NMC types. The overrepresentation could lead
to models biased towards NMC111 leaching behavior and
limit the potential generalizability to other cathode chem-
istries. This hypothetical limitation is compounded by the sim-

plified representation of the chemical system within the data.
While these parameters are the conditions one would expect to
control in a leaching experiment, they offer a simplistic view of
the chemical environment and of the solid substrate. It means
that the leaching model might not be able to effectively differ-
entiate the performance of different acids, namely the di- and
tri-protic acids included in the data set. These potential issues
were addressed by using RDKit to retrieve a comprehensive set
of chemical descriptors, expanding the number of features
used to characterize each leaching environment, as detailed in
section 3.2. Additionally, it would be possible to employ selec-
tive resampling techniques such as SMOTE to combine over-
sampling of less represented leaching conditions and under-
sampling of NMC111/HCl data points to build a more evenly
distributed data set.50

Analyzing the leaching yield statistics, presented in
Table S9, reveals that while complete extraction is possible for
all metals of interest (mode and maximum yields of 1.00), the
average extraction within the dataset varies significantly.
Lithium exhibits the highest average extraction (xLi = 0.78),
suggesting it leaches more readily under the acidic test con-
ditions in the set than the transition metals (xNi = 0.64, xMn =
0.58, xCo = 0.57). The disparity in the average leaching efficien-
cies highlights the need to optimize recycling methodologies,
particularly to maximize manganese and cobalt extraction.

Fig. 4 Selectivity and enrichment factor visualizations generated by LIB Leaching Toolkit.
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The potential of linear relationships between the selected
features and metal leaching yields was assessed by computing
the Pearson correlation coefficients. The coefficients, ranging
from −1 to +1, quantify the strength and direction of the linear
relation between each feature and target. Values near the
extremes indicate strong linear correlation, while values close
to zero suggest a lack of linear relationship. As depicted in
Fig. 5, the coefficients reveal predominantly weak linear corre-
lations between the features and targets. The absence of
strong correlations showcases the necessity of employing more
sophisticated, non-linear modeling techniques to accurately
capture the complex interplay of factors governing the leaching
process.

Having analyzed the input data, the subsequent phase
focused on the preparation of the dataset for the machine
learning modeling process. Fig. 6 displays a comparison
between the entire dataset and the data that was set aside for
testing, confirming that the latter is indeed representative of
the dataset. The distributions of the features in both the full
dataset and the test set exhibit similar medians, interquartile
ranges and overall spread. The test split preserves the under-
lying data characteristics, ensuring that the model evaluation
is conducted on a sample that reflects the original data
distribution.

3.2. Model and feature selection

Several authors applied data science approaches to model
chemical leaching reactions, including leaching from waste
LIBs. Based on the study comparison presented in Table 1,
three models were selected for further investigation: random
forests (RF) showed consistent success across various leaching
applications; gradient boosting methods, particularly Gradient
Boosting Regression (GBR) and Extreme Gradient Boosting
(XGB), proved effective in capturing the complex relationships
involved in leaching processes; Artificial Neural Networks
(ANN) offer flexibility and adaptability, making them capable
of modelling non-linear and intricate patterns in leaching
data. To potentially improve model performance and calculate
a prediction error estimation, a pairwise difference regression
technique was also employed. This approach, adapted from

the work of Tynes et al.,23 denoted as PD-RF, PD-GBR and
PD-ANN, involves transforming the original dataset into pair-
wise differences. Instead of training the models on individual
data points, they are trained on the differences between pairs
of data points. This simple transformation squares the
number of training samples available, potentially improving
model accuracy – especially useful when a relatively small
dataset is used. Additionally, by pairing new data points with
all the points in the training set, this method generates a dis-
tribution of predictions, effectively anchoring the predictions
to the known data. The standard deviation of this distribution
of predictions provides an estimate of the prediction
uncertainty.

Model performance was assessed using the coefficient of
determination (R2), mean squared error (MSE) and mean
absolute error (MAE). The training statistics, available in
Table S10 of the SI, show an adequate fit of the RF and GBR
models, with R2 values of 0.888 and 0.958, respectively. The
ANN model was less effectively trained, with an R2 of 0.711.
While ANN are powerful, versatile models, they typically
require a large amount of data to be trained effectively. With a
limited dataset of 776 points, the model likely did not have
enough information to reliably learn these parameters and
identify the underlying patterns in the data. However, these
results highlight the advantages of data augmentation using
the PD approach: the PD-ANN models were more effectively
trained than their more basic counterparts (training R2

increased from 0.711 to over 0.946). The PD-GBR model
achieved the best fit to the training data, with an R2 of 0.997. It
was not possible to assess the performance of the PD-RF
model, as the model training exhausted the resources of the
machines available for training, illustrating the potential
inadequacy of RF to work with large datasets (7762 points). It
is noteworthy that applying the PD algorithm to augment
the dataset allowed a better fit of both the ANN and GBR
models.

Analyzing the test statistics in Table 2 to compare the
models, it is clear that the GBR and PD-GBR models are the
best suited to the modelling task, with a testing R2 of 0.914
and 0.933 respectively and comparatively low error statistics.

Fig. 5 Pearson correlation coefficient for the feature-target pairs.
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The RF and PD-ANN models perform similarly, with R2 of
around 0.803 in both cases. The poorly trained ANN model falls
behind in testing, with an R2 of 0.684. Considering the similar
performance of the GBR and PD-GBR models, the PD version was
chosen to continue this work. The increased complexity and
model size are outweighed by the slightly increased training and
testing performance and the ability to provide error estimates. A
comparison of experimental and PD-GBR predicted results in
Fig. 7, confirms the goodness of fit with points evenly distributed
around the diagonal line, indicating a lack of systematic bias in
the predictions across the range of leaching yields and elements.
The experimental vs. predicted plots for the remaining models
are available in Fig. S2 of the SI.

In addition to the features that were explicitly included in
the dataset, several properties were retrieved based on the acid
SMILES string using the RDKit package version 2024.09.06 for
Python.51 The goal was to improve the description of the leach-

ing environment and potentially extend the predictive capabili-
ties of the models to acids beyond those in the original
dataset. Due to the substantial number of potential features
available through this package, a descriptor selection and
grouping were performed:

• Basic molecular properties, including the reaction con-
ditions and number of atoms.

• Properties related to Lipinski’s rule of five for drug dis-
covery: octanol–water partition coefficient (log P), topological

Fig. 6 Comparison between the entire data set and the 15% randomly selected testing points.

Table 2 Average testing statistics for each of the models. The full set of
features was considered. R2 – coefficient of determination, MAE – mean
absolute error, MedAE – median absolute error, MSE – mean squared
error, RMSE – root mean squared error

Model R2 MAE MedAE MSE RMSE

RF_full 0.803 0.096 0.074 0.018 0.134
GBR_full 0.914 0.062 0.041 0.008 0.090
ANN_full 0.684 0.132 0.104 0.031 0.174
PD-GBR_full 0.933 0.051 0.028 0.006 0.079
PD-ANN_full 0.804 0.093 0.064 0.018 0.134

Fig. 7 Plot comparing the experimental and predicted leaching yields
of the various LiNixMnyCo1−x−yO2 materials using the PD-GBR model for
all tested acids.
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polar surface area (TPSA), the number of hydrogen bond
donors and acceptors and the molar mass.

• Charge properties, represented by the maximum and
minimum partial charge on any atom of the molecule.

• Polarizability of the molecule, represented by its molar
refractivity.

• Molecular structure, quantifying the presence of specific
groups such as carboxylic acid, C–O bonds, primary amine, ter-
tiary amine, halogen atoms, aliphatic hydroxyl groups, and the
number of sulfur atoms.

A series of tests were performed, training PD-GBR models
with different feature sets to assess the impact of different fea-
tures on model performance. Table S11 provides an overview
of the model-feature pairs evaluated, starting with the
inclusion of all available features and progressively dropping
groups. Model training was performed as described above.

The training statistics, detailed in Table S12, demonstrate a
consistently strong fit for the PD-GBR models to the training
data. All models achieved R2 values exceeding 0.97 and low
error metrics, indicating their ability to capture the underlying
patterns in the data. The PD-GBR models maintain good per-
formance on the unseen test data (Table S13). The PD-GBR-full
model, containing all features, yielded the best test metrics
with an R2 of 0.9332 and MAE of 0.0513, showing a very good
predictive performance. Notably, the other feature sets closely
follow this model performance-wise. Highlights include
feature sets that exclude log P, TPSA, number of hydrogen
bond donors and acceptors and molecular weight, as well as
the set that excludes the maximum and minimum partial
charge and molar refractivity of the acid molecules. These two
sets achieve a R2 of 0.9296 and 0.9297, respectively.
Interestingly, comparing the simplest set, containing only
basic experimental parameters, with the full set, revealed only
a moderate penalty in model performance. The simpler set
yielded an R2 of 0.9222 and MAE of 0.0566, compared to the
full set’s R2 of 0.9332 and MAE of 0.0513.

While the remarkably similar performance between sets
suggests that a simpler feature set performs equally well on
the current dataset, a strategic choice was made to use the full
feature set. This more comprehensive description of the
chemical environment is aimed at enhancing the model’s
potential generalizability to acid chemistries outside of the
training set, at the cost of additional model complexity and
training time. Consequently, the remainder of this work
employs the PD-GBR-full model, using the features listed in
Table S2.

3.3. Model analysis

To compare the fit of the PD-GBR model between the different
acids, the data was divided into four groups, considering the
three most well-represented acids in the dataset: hydrochloric
acid (HCl), sulfuric acid, nitric acid and “other” acids, primar-
ily organic acids. Initial analysis of the MAE of each group
revealed differences in the MAE of prediction for each acid.
Nitric acid exhibited the highest MAE at 0.0772, followed by
HCl at 0.0563, sulfuric acid at 0.5232 and the lowest for the

other acids group at 0.0390. An independent-samples Kruskal–
Wallis test, performed on the absolute error of each esti-
mation, indicated a significant difference between groups (p <
0.001) with 95% certainty, leading to the investigation of this
divergence. A pairwise Dunn’s test, detailed in Table S14 of the
SI, confirmed a statistically significant lower MAE of the “other
acids” group when compared with HCl (p = 0.016), sulfuric
acid (p = 0.010) and nitric acid (p = 0.002). Conversely, no stat-
istically significant differences were found between the other
three acid groups – the predictive performance for HCl, sulfu-
ric and nitric acid systems is statistically similar. This analysis
demonstrates that, despite HCl and sulfuric acid representing
approximately 66% of the dataset, the developed model per-
forms well, or even better, on the less well-represented acids in
the dataset, as visually depicted in Fig. 8.

Beyond acid type, the influence of the feature set on the pre-
dictive accuracy was also examined. Wilcoxon signed-rank tests
were performed to assess if the observed performance vari-
ations could be attributed to the more comprehensive feature
set. These tests compared the MAE of prediction for each acid
group using the full feature set against a base set, which
included only basic experimental parameters and acid descrip-
tors. Crucially, Fig. 8 and the test statistics presented in
Table S15 show that the only group where the base set exhibi-
ted a significantly higher MAE was the “other” acids category
(p = 0.016). No significant differences were found for the other
acid groups. While the expanded feature set does not offer an
advantage for the most common inorganic acids in the
dataset, its inclusion proves helpful in describing less rep-
resented acids (primarily more complex organic acids).

To better assess the model’s robustness, its predictive capa-
bility was evaluated across different experimental yield ranges.
The data was divided into three groups according to the experi-
mental yields: the first one for yields under 0.3 (MAE = 0.043),
the second one for yields between 0.3 and 0.7 (MAE = 0.058),
the third one for yields above 0.7 (MAE = 0.050). A Kruskal–

Fig. 8 Boxplots comparing the absolute error of prediction across all
studied elements for sulfuric acid, hydrochloric acid, nitric acid and the
remaining acids by PD-GBR models with the base and full set of
features.
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Wallis test, performed on the absolute error of each esti-
mation, indicated very significant differences between groups
(p < 0.001). An ad-hoc pairwise Dunn’s test was performed,
whose results are available in Table S16, demonstrating that
there are significant differences between the group with low
yields (y < 0.3) and the other two. Surprisingly, the PD-GBR
model appears to estimate lower yields slightly more accurately
than higher yields. Another aspect of the model’s generaliz-
ability is its performance across different target metals. An
independent-samples Kruskal–Wallis test was performed to
assess if the predictive performance is different for the target
metals (Li, Mn, Co, and Ni) under consideration. A p-value of
0.668 was obtained, indicating no significant differences exist
between the MAE for the target metals.

To complete the analysis, the model’s performance was
examined across different cathode chemistries. The predic-
tions for NMC333 (MAE = 0.046), NMC622 (MAE = 0.102),
NMC811 (MAE = 0.028) and remaining chemistries (MAE =
0.051) were compared. A p-value of under 0.001 in the indepen-
dent-samples Kruskal–Wallis indicates there are differences
between cathode chemistries, which were probed using pair-
wise Dunn’s tests. The pairwise comparisons, detailed in
Table S17, reveal several significant differences. NMC811,
which exhibited the lowest MAE, showed significantly better
predictions compared to the “other” chemistries (p-value =
0.044) and NMC622 (p-value < 0.001), which had the highest
MAE. The difference between NMC811 and NMC333 was not
found to be significant. Similarly, the predictions for NMC333
were significantly better than NMC622 (p-value < 0.001) but
not significantly different from the “other” chemistries. The
“other” chemistries also showed better predictions than
NMC622 (p-value < 0.001). Collectively, these results indicate
that the model’s predictive performance varies significantly
across cathode chemistries. NMC811 and NMC333, represent-
ing over 55% of the testing data, generally perform better or
similarly to each other and the “other” group, while NMC622,
around 11% of the testing data, consistently obtains signifi-
cantly higher prediction errors compared to the remaining
categories.

3.4. Application

Developing accurate and versatile models for LIB leaching is
crucial for developing and optimizing recycling processes.
However, the true value of these models lies in their appli-
cation to real-world scenarios. To this end, a Python appli-
cation was developed, named “LIB Leaching Toolkit”, incor-
porating the PD-GBR work developed above with environ-
mental and economic impact assessment strategies to obtain a
more holistic approach to the study of LIB recycling. The goal
of this work was to provide a user-friendly platform to enable
rapid evaluation of leaching yields, selectivity, environmental
impacts and economic viability, allowing for rapid evaluation
of leaching strategies by developing a user-friendly graphical
user interface. This integrated approach bridges the gap
between data science and chemical engineering, streamlining
the development of LIB recycling strategies. The capabilities

and limitations of this approach are better illustrated using
three case studies.

3.4.1. Case study 1 – kinetic parameter estimation. To vali-
date the physicochemical realism of the PD-GBR model, its
predictions were used to estimate the activation energy (Ea) for
the leaching of each metal. The leaching of NMC111 was simu-
lated using 2 M HCl, a solid–liquid ratio of 20 g L−1, between
25 °C and 80 °C. The resulting kinetic curves are presented in
Fig. S3 of the SI.

The leaching kinetics were fitted to four different kinetic
models using a least squares methodology: linear model (x =
kt ), shrinking core model (SCM) with chemical reaction
control (1 − (1 − x)1/3 = kt ), SCM with product layer diffusion
control (1–3(1 − x)2/3 + 2(1 − x) = kt ) and SCM with a combi-
nation of film diffusion and chemical reaction control

½ð1� xÞ�1=3 � 1� þ 1
3 lnð1� xÞ ¼ kt

� �
.52 A comparative study,

detailed in Table S18, revealed that the mixed model provided
the best fit for the data. This model was used to determine the
rate constant (k) for each metal at each temperature from the
slope of the linearized plot. The Arrhenius plot in Fig. 9 was
constructed by plotting the natural logarithm of the rate con-
stant against the reciprocal of the absolute temperature. From
the slope of this plot, equal to −Ea/R, the activation energies
were calculated, as presented in Table 3. The calculated acti-
vation energies are consistent with reported values for similar
leaching systems, further validating the predictive capabilities
of the PD-GBR model that was developed.53,54 A direct com-
parison with literature values is provided in Table 3.

However, reported activation energies can vary significantly
between studies. This variation may stem from differences in
the methodologies used to determine the rate constant and
whether and how distinct dissolution stages are considered.
Furthermore, the morphology of the cathode material plays a

Fig. 9 Arrhenius plot for the leaching of Li, Ni, Mn, and Co from
NMC111 cathodes between 25–80 °C. The slopes of the linear
regression are used to calculate the activation energies (Ea) presented in
Table 3. The simulated kinetics data used to compute the kinetic para-
meters are available in Fig. S3 of the SI.
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key role in determining if the process is limited by diffusion or
chemical reaction constraints.38,55 It is also crucial to consider
that the dataset at the basis of the model contains data from
pristine cathode material, battery cathode, and isolated oxides
without binders. Consequently, the model’s prediction of acti-
vation energy likely represents a generalized kinetic behavior,
rather than the kinetics of a single, idealized material, reflect-
ing the mixed nature of the source data.

3.4.2. Case study 2 – qualitative techno-economic and
environmental assessment of leaching agents. While previous
sections validated the predictive capabilities of the developed
model, optimizing a single metric like leaching yield is insuffi-
cient to develop economically viable systems while minimizing
environmental impact. This case study demonstrates the capa-
bilities of the LIB Leaching Toolkit to unify technical, econ-
omic and environmental impact analysis into a single frame-
work. To illustrate this, we compare conventional inorganic
acids (sulfuric, hydrochloric) with organic acids such as citric,
acetic, ascorbic, and lactic acid. While the latter are often pre-

sumed to be greener, a comprehensive assessment must
account for upstream production impacts and costs. This
study showcases how the toolkit can be used to compare these
leaching scenarios, considering both their leaching perform-
ance and potential environmental impact to make more holis-
tic design decisions from early stages of process development.

The Toolkit was used to predict yields and calculate impact
metrics for a set of six different acids. The tests were con-
ducted on fixed conditions: NMC111, 40 °C, 50 g L−1, 60 min
leaching, 1 mol L−1 of acid. Environmental impacts and costs
were calculated for 1000 kg of cathode material. Keeping the
experimental conditions fixed allows to isolate the effect of the
different acids on leaching and environmental and economic
impact. Fig. 10 displays the predicted yields and standard devi-
ation for the leaching scenarios outlined. The results indicate
that hydrochloric acid and ascorbic acids are predicted to be
the most effective leaching agents under these conditions.
Despite the common greener perceptions of organic acids
compared to inorganic ones, it is crucial to also take economic
and environmental considerations into account. Fig. 11 ranks
each acid according to the environmental impacts of its pro-
duction, including upstream impacts, calculated for the quan-
tity needed in each leaching scenario using the Environmental
Footprint 3.1 impact assessment method.56 Taking this into
account, the organic acids perform worse than hydrochloric
and sulfuric acid across all impact categories for the leaching
scenarios considered. This can be attributed to the production
of organic acids often relying on inorganic acids. Citric and
lactic acid, for example, are produced first as calcium citrate
and calcium lactate through fermentation processes. A
pathway to recover the acids is the addition of sulfuric acid to
precipitate calcium sulfate, leaving the organic acid
solution.57,58

Table 3 Kinetic parameters for the leaching of Li, Ni, Mn, and Co,
derived from the linear regression of the Arrhenius plot in Fig. 9, and a
comparison with reported literature values. The table presents the cal-
culated activation energy (Ea), the natural logarithm of the pre-exponen-
tial factor (ln(A)), the slope of the plot (−Ea/R), and the coefficient of
determination (R2)

Model
Ea (kJ mol−1) R2

Reported
Ea (kJ mol−1) Ref.

Li 17.9 0.7765 103; 23.83; 17.4 38, 53 and 54
Ni 31.6 0.9697 101 38
Mn 31.8 0.9492 101 38
Co 27.3 0.9175 100; 27.72; 40.4; 38, 53 and 54

Fig. 10 Metal leaching yields from NMC111 predicted by the developed PD-GBR model for fixed conditions: 40 °C, 50 g L−1, 60 min leaching, 1 mol
L−1 of acid.
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The estimated reagent, mixing and heating costs, available
in Fig. 12, are consistent with the results of Fig. 11, showing
that inorganic hydrochloric and sulfuric acids have signifi-
cantly lower costs when compared to the selected organic
acids. This allows to conclude that for the purposes of NMC
leaching, inorganic acids like hydrochloric and sulfuric acid
might be advantageous both from an economical and environ-
mental perspective, in apparent contradiction with the greener
perception of organic leaching agents. Despite the limitations
of this simplified comparative approach, the relative economic
and environmental impact assessment is strongly supported

by recent LCA studies, revealing that inorganic acids can
remain more environmentally viable options for LIB cathode
recycling compared to organic acids, primarily due to lower
quantity of reagents needed.59,60 These works also identified
sulfuric acid as having a lower environmental impact than
lactic, ascorbic, or citric acid, whilst acetic acid was also evalu-
ated as a better alternative to these within organic acids.

However, it is important to stress that the results of the
“LIB Leaching Toolkit” should only serve as a preliminary
screening tool and does not substitute a comprehensive LCA
or detailed economic analysis. The environmental impact esti-
mates are calculated based on quite narrow process bound-
aries, considering only the production of the acid needed for
each leaching scenario. Additional environmental impacts
during leaching, such as gaseous emissions of Cl2 when using
HCl, and the recovery and/or neutralization of the acids down-
stream of the leaching step are not considered in the calcu-
lations. Finally, the conclusions may not extrapolate when con-
sidering an overall hydrometallurgical process as the choice of
lixiviant and process integration influences subsequent separ-
ation units and the effluent volumes generated.

3.5. Case study 3 – beyond the training set

A final case study explores the toolkit’s ability to handle leach-
ing agents not included in the training data. Acids from
different families were selected: methanesulfonic acid (MSA),
glutaric acid (GLU), glycine (GLY) and phosphoric acid (PHA),
not included in the original set; hydrochloric (HCl) and oxalic

Fig. 11 Ranked conditions according to their environmental impact.

Fig. 12 Costs per kg of metal leached from NMC in thousands of euros
(all price inputs are summarized in Tables S6 and S7 of the SI).
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acid (OXA), the most and one of the least abundant acids in
the dataset, were included for comparison. These acids were
selected purposefully due to their large structural difference in
functional groups or leaching mechanisms to the most rep-
resented acids in the training set, providing a test of the
model’s robustness and highlighting its current limitations.
This case study probes the toolkit’s versatility in evaluating
diverse leaching scenarios and its potential for extrapolation to
novel conditions. Conditions were arbitrarily fixed for the
leaching of NMC111: 65 °C, 60 min, 50 g L−1, 2 mol L−1 of
acid. The following leaching agents were tested experimentally
and the experimental yields compared with the yields pre-
dicted by the PD-GBR model.

As shown in Fig. 13, the model generally presents good
agreement with experimental results for lithium across most
acid systems. Predictions for MSA and PHA – two acids with
functional groups not included in the training set, and OXA –

a poorly represented acid in the training set whose corres-
ponding metal transition complexes are poorly soluble, are
remarkably close to experimental. Leaching results for the HCl
system are underestimated but within the error margin, whilst
the GLU system is overestimated. The zwitterionic GLY system
was notably poorly characterized by the model, being signifi-

cantly different in nature to the acids included in the training
set. This is somewhat expectable due to the more complex pH-
dependent speciation of amino acids and self-buffering effect.
For example, whilst the first dissociation constant input of
GLY in the model was pKa = 2.3, the experimentally measured
pH of the leach solution was significantly higher at 6.2. Such a
discrepancy suggests that additional parameters might be
required to properly capture leaching using zwitterions.
Importantly, the experimental results for GLY are in accord-
ance with previous works that report poor leaching yields in
the absence of an additional reducing agent.61

The prediction of lithium, nickel, and cobalt yield for
almost all acids is in reasonable to excellent agreement with
experimental results. The two notable exceptions are GLY and
OXA, which are both problematically overestimated. As dis-
cussed in the case of OXA, the poorly soluble nature of the
corresponding transition metal oxalate complexes is likely con-
tributing to the observed overestimation. Whilst the solubility
products of the respective acid salts were included as model
inputs when available, pondering its importance is required to
better dissociate “leaching performance” from the final metal
concentration in solution for acids likely to exhibit leaching
and provoke subsequent precipitation.

Fig. 13 Comparison between experimental results and predictions for systems containing 2 M HCl, methanesulfonic acid (MSA), glutaric acid (GLU),
glycine (GLY), phosphoric acid (PHA) and oxalic acid (OXA).
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Unfortunately, manganese leaching yield predictions were
considerably overestimated for all acids except those included
in the training set (HCl). This consistent overestimation could
indicate systematic bias in the model. These results appear to
contradict the analysis discussed prior, which showed that the
PD-GBR was not significantly worse at predicting manganese
yields than any of the others for acids in the training set.
In fact, those results show a lower MAE in lower yield systems,
which should lead to improved manganese predictions,
considering that Mn leaching yields are on average lower than
the other metals. In addition to the unique redox behavior of
manganese (discussed below) which complicates the
prediction, a further contribution to the systematic overestima-
tion of the leaching yield may be due to the available data
used during training. For Mn, 40% of the data pertains to a
leaching yield of 0.75 or higher, whereas 80% of the data
shows a yield of over 0.25. As the model developed herein is
entirely data-driven, this bias in the data could explain the
difficulty of predicting low manganese yield, especially in com-
pletely untested systems such as the ones selected for this
case study. This problem is exacerbated for less manganese-
rich cathode chemistries, as data points with 0.2 lithium equi-
valent amounts of manganese or less show a statistically sig-
nificantly higher (p < 0.001) average manganese yield (0.71)
than the general population of data points (0.58). Future
work on the model refinement will seek to address this gap in
the data.

Another possible explanation lies in the distinctive behavior
of manganese during the leaching of battery cathodes. After
an initial “self-regulating” step where the transition metals
in the LIB cathode exhibit similar leaching behavior, the
dissolution enters a second stage where manganese in solu-
tion decreases, resulting in an atypical leaching behavior
when compared with the other transition metals. The under-
lying cause is the occurrence of side reactions, such as the
disproportionation or oxidation of Mn2+ ions and the pre-
cipitation of higher-valence MnxOy species. These reactions
lead to surface reorganization and the formation of new
manganese phases, including metastable birnessite and sub-
sequently γ-type manganese oxide. As a result, a manganese-
rich core–shell structure forms, driven by the presence of
divalent manganese in the solution.55 A possible approach
to capture the irregular solubility of Mn with leaching time
is to include more chemical descriptors, such as the oxi-
dation reduction potential of the solutions, to help establish
more extrapolation points for the machine learning model.
Unfortunately, there is currently a lack of such data that pre-
cludes its inclusion.

Results from Fig. 13 suggest that while the model and
feature set offer some generalizability to acids outside the
training data (as demonstrated by the MSA and PHA results),
care must be taken to validate the predictions, especially for
manganese rich chemistries. However, the PD-GBR model
developed herein proved a worthwhile tool for preliminary
studies of acids outside the training set, if not for a definite,
accurate prediction of leaching experiments.

4. Conclusion

The development of ML algorithms for modelling metal leach-
ing is an important step in improving battery recycling techno-
logy. However, poor data availability challenges the implemen-
tation of conventional ML approaches. This work presents the
first application of PD to LIB recycling, demonstrating its capa-
bility to improve model accuracy when working with a limited
dataset. The developed PD-GBR model proved the most
effective among those tested, exhibiting strong predictive per-
formance and the ability to offer error estimations.

Beyond modeling and prediction, this work bridges the gap
between data science and chemical engineering, by integrating
the ML models into a user-friendly toolkit. This allows for
evaluation and optimization of reaction conditions, by offering
both yield predictions and preliminary economic and environ-
mental impact assessments. For these assessments, the cost
metrics focused on reagent, mixing and heating expenses.
Similarly, the environmental impact assessment is limited to
the impact of acid production and does not extend to down-
stream wastewater treatment, which would be crucial in a full
LCA. Albeit simplified, an integrated approach such as this
one is invaluable for streamlining the development of sustain-
able LIB processes. Additionally, the ability to quickly simulate
process outcomes under varying conditions, as demonstrated
in the case studies, highlights the potential of this kind of
approach for faster iteration and process optimization,
enabling more informed process design and control for re-
cycling plants.

While the models presented herein generally exhibit good
agreement with experimental data, limitations in the generaliz-
ation of novel conditions were observed and highlight the
need to validate all modelling tools for a specific purpose. For
example, for acids not included in the training set, a good pre-
dictive performance was observed for MSA and PHA, but the
model struggled with other more diverse leaching agents like
zwitterionic glycine. These findings underscore the need for
more comprehensive and diverse datasets to improve model
performance, robustness and generalizability prior to its
broader application in process development and digital twin
settings. Future efforts will focus in addressing these biases as
well as capturing more relevant industrial conditions. This
includes the influence of copper and aluminum ion impuri-
ties, known to impact the redox leaching of black mass, as well
as leaching yields in mixed acid solutions.62

Although preliminary, this work emphasizes the impor-
tance of integrating emerging computational tools into the
development of greener, better metal recycling processes. The
LIB Leaching Toolkit serves as an important preliminary study
tool for agile screening and optimization of leaching con-
ditions, paving the way for more efficient and environmentally
conscious battery recycling. The natural continuation of this
work would be to expand the dataset to include a greater range
of cathode materials and acids, particularly focusing on real
waste streams and possible contaminants, which were dis-
regarded for this work.
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