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Global population growth has led to the use of fossil
fuels and global pollution problems. Biodiesel, a renewable and
environmentally friendly alternative to petroleum fuel, is produced
from organic oils and animal fats, causing food safety issues.
Unprocessed crude oils are inexpensive raw materials with a high
content of free fatty acids. Ionic liquids (ILs) are used as catalysts
for biodiesel production to solve the problems of traditional
catalysts. This manuscript proposes the COSMO-RS model and
machine learning as predictive tools for screening ILs as catalysts
for fatty acid methyl esters (FAME) synthesis. COSMO-RS activity
coefficient model was used to obtain the ILs sigma profile and
interaction energies (electrostatic-misfit (Emisfit), hydrogen bond
(Eyg), and van der Waals (E,gy)) to correlate the yield of reaction.
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The machine learning models, such as K-nearest neighbor, Random Forest Regressor, Decision Tree Regressor model, Gradient
Boosting Regressor, and Multilayer Perceptrons model, were applied to correlate the above-mentioned properties. The Gradient
Boosting Regressor model, using the analysis of the anion and cation sigma profiles, proved to be more efficient than the same

model, using the approach of the interaction energies. Based

on the screening study, the ILs [L-arginine][Acetate], [r-

arginine][HSO;], and [r-arginine][NO5] were selected, synthesized, and characterized.

ionic liquids, biodiesel, interaction energy, gradient boosting regressor, jupyter notebook, sigma profile

Clean and renewable energy sources, such as biodiesel, play an
important role in mitigating the global challenge, the urgency
of combating climate change, and achieving the 2030 Agenda
for Sustainable Development. Rising emissions of various
greenhouse gases into the atmosphere have serious con-
sequences for our planet; therefore, the transition to renewable
energy is more crucial than ever. Biodiesel, obtained from
renewable resources such as vegetable oils, recycled oils, and
animal fats, can help reduce gas emissions and mitigate climate
change to ensure a sustainable future for our planet.””

The traditional methods used to produce biodiesel from fats
and oils are transesterification, pyrolysis, and emulsification.
Transesterification is a reaction commonly used in industry
because it produces an environmentally friendly biofuel that is
highly compatible with the currently used diesel engines. It
involves fats and oils in the presence of alcohol and an effective
catalyst, generating alkyl esters and glycerol as a bioproduct.’

Biodiesel production involves the use of different types of
catalysts for the transesterification of triglycerides. These
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include homogeneous and heterogeneous catalysts, as well as
biocatalysts such as enzymes (enzymatic catalysis).”*
Homogeneous base catalysts include metal oxides and
alkaline liquids such as potassium methoxide, sodium
methoxide, carbonates, sodium hydroxide, and barium
hydroxide.” Homogeneous acid-catalyzed transesterification
offers an advantage over homogeneous base-catalyzed trans-
esterification because the presence of free fatty acids does not
deactivate the acid catalyst, and both esterification and
transesterification can be catalyzed simultaneously, although
it requires long times and high temperatures.6 However, when
it comes to esterification and transesterification reactions, the
use of a homogeneous catalyst causes many problems when
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sulfuric acid is used in esterification, causing corrosion of the
reactor.

Compared to homogeneous catalysts, heterogeneous cata-
lysts offer several benefits, including easy regeneration and
lower corrosiveness and are more environmentally friendly.
However, they have some disadvantages, such as the use of
high temperatures and a high alcohol molar ratio.”

To this end, the synthesis of more environmentally friendly
and sustainable catalysts for biodiesel production is urgently
needed. It is necessary to explore new, efficient catalysts to
help solve or mitigate the aforementioned problems.” Ionic
liquids emerge as alternative catalysts that can meet these
needs, given their unique physicochemical properties, such as
thermal stability, nonflammability, nonvolatility, immiscibility
with organic solvents, and their recoverability.” Basic ionic
liquids such as cholinium arginate [Cho][Arg], Tetrabutylam-
monium arginine [TBA] [Arg] have been used as substitutes
for conventional catalysts for the transesterification of
vegetable oils and the acidic ionic liquids, such as 1-
butylsulfone te-3-methyl imidazolium hydrogen sulfate
([BSO;Hmim][HSO,]) and 1-(4-sulfonic acid) butylpyridi-
nium hydrogen sulfate ([HSO;—BPyr][HSO,]), have been
used for the esterification of fatty acids or animal fats due to
their high catalytic activity.'"~"> As observed in the literature
reviews by O’Connor et al.'* and Zhang and Sun," it is
notable that there is catalytic potential with ionic liquids for
biodiesel synthesis; however, there are a high number of ionic
liquids as potential candidates, insufficient characterization and
scarcity of research in this area.

COSMO-RS is a thermodynamic model that predicts the
properties of pure fluids or mixtures based on their chemical
structure using a quantum chemical approach. The model
employs a statistical thermodynamic approach and the
“COnductor-like Screening MOdel” (COSMO) for efficient
continuous dielectric solvation calculations. It represents
molecules as surface segments, and the chemical potential is
calculated from the interaction energies. The total chemical
potential is the sum of the segment contributions. Studies have
linked the polarity of ionic liquids to quantum chemical
parameters, demonstrating their effectiveness as a correlation
tool.'°™"?

On the other hand, machine learning (ML) is a data-driven
modeling technique classified into several types. Supervised
learning uses labeled data for specific tasks, while unsupervised
learning seeks patterns in unlabeled data. In the last two
decades, ML has become a widely used technology in
commercial settings within artificial intelligence (AI). Many
AT developers find it easier to train systems using examples of
desired input—output behavior rather than manually program-
ming responses for all possible inputs.”””’

Furthermore, the polarity of the molecules stored in the
sigma profile of ionic liquids obtained with the COSMO-RS
model has not been fully explored with machine learning
models to predict the catalytic capacity of ILs that has not yet
been characterized. Therefore, this study aimed to predict the
catalytic capacity of ionic liquids that have not been used in
catalysis for the synthesis of fatty acid methyl esters (FAMEs).
To this end, COSMO-RS was used as a predictive tool to
generate the sigma profile of ionic liquids and use them as
molecular descriptors in machine learning models with the aim
of correlating the described properties.

COSMO-RS is a quantum chemistry-based method for
predicting thermodynamic properties of liquids and solutions
where molecules are represented as a collection of interacting
surface segments, each characterized by its screening charge
density (6). COSMO-RS calculations are performed for all
molecules involved, generating a 3D polarization density
distribution on the molecular surface. Then, the 3D polar-
ization density is converted into a distribution function called
the o-profile (p(c)), which describes the polarity of each
surface segment. The chemical potential of a molecule X in
solvent S is then calculated by integrating all its surface
segments and adding combinatorial and dispersive contribu-
tions. This approach allows the COSMO-RS to predict various
thermodynamic properties, including activity coeflicients,
solubility, partition coeflicients, vapor pressure, and free energy
of solvation. The method’s strength lies in its ability to
combine quantum chemical accuracy with statistical thermo-
dynamics, enabling predictions for a wide range of systems
without the need for system-specific parameters.

From the molecular sigma profiles, the sigma profiles of the
whole system/mixture (S) can be derived as the sum of the
mole fraction of the sigma profiles of the components weighted
with their mole fraction in the mixture x:
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In this context, the interaction energy Ejyr(6,6’) includes
electrostatic interactions (misfit energy, E,), hydrogen
bonding (Eysg), and van der Waals (E,q4,):
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where e and ¢’ are the contacting surface segments.
RT 1
6=——ln/sa'e(—a o
pg(o) ” [ ps(o’) exp RT(effﬂs( )

- Emisﬁt(al 6/) - EHB(GI U/)))dG/] (6)

ug(0) is called the potential ¢ and can be interpreted as the
affinity of solvent S for the surface of polarity o. Finally, the
pseudochemical potential of compound X in system S can be
calculated by integrating ug(c) over the surface of the
compound, eq 7.”
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Uls is a combinatorial term commonly used in chemical
engineering models.
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Figure 1. Workflow of the methodology used.

The overall workflow is described in Figure 1, and the steps are
indicated throughout the explanation. In this study, the Hammett
acidity of ionic liquids (ILs) with catalytic capacity reported in the
literature was initially analyzed (Supporting Information, Table SI).
Then, predictive acidity analysis was performed using COSMO-RS,
utilizing electrostatic misfit (Eyg), hydrogen bond (Eyg), and van der
Waals (E,qy) energies (Supporting Information, Table S2).
Consequently, acidity values were analyzed against yield, considering
the influence of the cation and anion with the aim of demonstrating
any correlation. Subsequently, machine learning models were used,
employing interaction energies, and descriptors based on sigma
profiles, specifically the areas under the sigma profile (S-profile)
(Tables S1—SS), were analyzed to correlate five segments of areas
below the S-profile curve of the ionic liquids (Supporting Information,
Tables S4 and SS). Analysis of the area under the curve segments,
using statistical criteria such as the coefficient of determination (R?),
mean absolute error (MAE), and mean squared error (RMSE),
showed that the Gradient Boosting Regressor (GBR) model achieved
higher statistical resolution in predicting FAME. Therefore, based on
these FAME performance criteria, ionic liquids with potential catalytic
characteristics were selected and identified for use in FAME synthesis.
These ionic liquids were characterized by 'H and *C NMR.

Many chemical transformations are sensitive to the presence of
protons. Therefore, knowing the pK, value is essential for deciding on
their possible applications as reaction media. A common and effective
method for assessing the acidity of Bronsted acids was the Hammett

2.6.1. Synthesis of protic ionic
L liquids (PILs)

method, based on the Hammett acidity function (H,), in which a
basic indicator was used to trap the acidic proton.”*

The Bronsted acid properties of a substance are based on the
Bronsted-Lowry theory. According to this theory, a Bronsted acid and
base are defined as substances that donate or accept a hydrogen ion
(H*) or a proton, respectively. Therefore, a Bronsted acid ionic liquid
(BAIL) can be defined as an ionic liquid that can donate a hydrogen
ion (H") or a proton. Acidic ionic liquids are prepared by reacting a
Bronsted base with a Bronsted acid. BAILs with one or more acidic
hydrogens residing on N or O atoms are also known as protic ionic
liquids (PILs). There are attempts to qualitatively correlate the
calculated H, values of BAILs with catalysis activities in chemical
reactions such as transesterification. These experiments show that
BAILs containing CF;SO; and HSO, anions with lower H, values
generate higher conversions and yields.”

Data were collected from the literature on various ionic liquids that
have demonstrated catalytic capacity to analyze whether the acidity of
the IL could significantly impact the esterification/transesterification
reaction.'>*® After compiling information on the acidity of different
ionic liquids with catalytic capacity, it was initially plotted H, against
FAME yield (%) graph (Supporting Information, Table S1 and Figure
S1). Performance data on FAME and H, were obtained from the
literature.

The method proposed by Kurnia et al.>” was used as a predictive tool
to determine the acidity of the hydrogen bond of the interaction
energies of ILs, as presented in eq 8.
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a = —(0.0164 = 0.0073)E, . + (0.0474 & 0.0046)E,;

‘misfit

+ (0.0017 + 0.0014)E_ 4, + (0.6934 + 0.1696) (8)

Table S1 presents calculated values for the acidity of the ionic
liquids. After optimizing the structures of the ILs, the acidity of the
ILs was determined. Consequently, the acidity versus yield values, as
illustrated in Figures S2 and S3 (Supporting Information), were
analyzed by considering the influence of the cation and anion to
demonstrate a potential correlation.

The structures of the ionic liquids were generated using ChemDraw
22.2.0 and Chem3D 22.2.0 software. In this context, using the
Turbomole program package version 4.5 (TmoleX19 interphase), the
molecular geometry of the ionic liquids was predicted and saved,
along with the charge density, charge distribution, and molecular
surface, in the COSMO format. The sigma profiles used in this work
were generated from the COSMO-RS thermodynamic model
Calculations were performed using the COSMOtherm software
with the BP_TZVP_21_.ctd parametrization, utilizing the “.cosmo”
files generated after optimizing the geometry (COSMOtherm version
21, COSMOlogic GmbH & Co KG. Leverkusen, Germany). Separate
files were used for the IL cations and anions, using an equimolar
cation—anion mixture of 65 IL to determine the interaction energies
(Emisiy Eupy and E,q,,) of a pure IL, with the COSMOtherm software
(version 21, BP_TZVP_21_.ctd parametrization) using the molecular
surface charge density parameter file (Supporting Information, Table
S2). After optimizing the structures of the ILs (Supporting
Information, Table S3), the acidity of the ILs was determined.

2.4.1. Linear Model. This stage involved selecting the input
variables, which are the independent variables of the model. In this
regard, two models were proposed. The first model considered the
interaction energies of 65 ionic liquids (E,;sy Enp and E,g,) with
documented catalytic capacity from the literature as presented in
Table S2 of the Supporting Information.

The linear regression model was applied by using the Linear
Regression function from the scikit-learn library. The dependent
variable was the yield (FAME). The independent variables included
the interaction energies E, 4, Exp, and E,q,, associated with the cation
(Emisttcy Enpey and Eqg,,c) and the anion (Epigess Enpa and Eygya) of
65 ionic liquids.

Data visualization was performed using the Python Seaborn library.
The Pearson correlation was applied to check whether there was a
correlation between the independent variables and the dependent
variable, using the corr() function, and visualized through the
heatmap() function of the Seaborn library, as shown in eq 9.

- Yo (=% —7)
V2o (& =% - 7) 9)

In multiple regression analysis, the term “multicollinearity” refers to
a linear relationship among the independent variables. This occurs
when regression models include variables that are significantly
correlated with not only the dependent variable. The presence of
multicollinearity increases the variance of the regression coefficients,
making them unstable, which creates challenges when the coefficients.

To determine whether multicollinearity exists among the
independent variables, the Variance Inflation Factor (VIF) is
employed for this purpose, utilizing eq 10.

1 1
VIF = > =
1-R tolerance (10)

Tolerance is the inverse of the VIF. The lower the tolerance, the
more likely there is multicollinearity among the variables. A VIF value
of 1 indicates that the independent variables are uncorrelated. If the
VIF value is between 1 and S, it suggests that the variables are
moderately correlated. The VIF value range to pay most attention to

is that between S < VIF < 10, as this indicates that the variables are
highly correlated.*®

2.4.2. Machine Learning Models. The computing platform used
in this work was Jupyter Notebook, an open-source web environment
for interactive computing that supports various programmin%
languages, such as Python, R, LaTeX, JavaScript, and many others.”
The Pandas library was utilized to import and manipulate data, tables,
and data frames. NumPy, a Python library for processing arrays, was
used to manage the data.

The train_test_split function from the scikit-learn data science
library was used to separate the data into training and test sets. All
models were trained using 80% of the data, while the remaining 20%
was reserved for testing. The data were normalized and standardized
with StandardScaler, a preprocessing technique provided by scikit-
learn. For the DTR model, hyperparameters were optimized using the
GridSearchCV approach, which helps identify overfitting. These
hyperparameters allow to find the ideal combination to optimize the
model’s performance, making it more accurate and robust.

Using the Jupyter Notebook with Python programming language,
all input variables were utilized to predict FAME performance
through machine learning algorithms. The primary focus is on the
accuracy of the models, as well as the prediction error. Analyzing
errors aids in understanding the bias and variance of the model. The
error rate is commonly termed bias, with the selection of input data
being the most influential parameter. The variance of a model denotes
the decrease in accuracy when assessing the model’s performance on
test data compared to training data.*’

In the final model, the number of nearest neighbors for the KNN
model was set to three. Additionally, the model conducted an
intensive force search to identify the closest locations, and the
distance weight function was applied in the prediction process. In the
context of the algorithm being analyzed, “distance” describes how
weight is assigned to points, based on the inverse of their distance.
This implies that points closer to a query point will have a greater
influence than those further away.>' In summary, the KNN model
criteria used are n_neighbors = 2, weights = “distance”, algorithm =
“brute”, and leaf size = 2.

The Gradient Boosting Regressor (GBR) algorithm is frequently
employed to predict energy consumption because of its high
accuracy.32 However, achieving an accurate prediction of the FAME
yield in this study necessitates a proper adjustment of the GBR
parameters, which demands considerable time.

For the Gradient Boosting Regressor model, the criteria used are
n_estimators = 100, max_depth= 4, max_features = “log2”,
min_samples_leaf= 1, min_samples_split= 2, criterion= “squared_error”,
learning_rate= 0.1, and tol = 0.0001.

For the Random Forest Regressor model, the criteria used were
n_estimators = 100, random_state = 42, criterion = “squared_error”,
max_depth = 10, max_features = 1, and bootstrap = False. For the
MLPRegressor model, the parameters used are hidden_layer_sizes =
(100), max_iter = 20,000, activation = “logistic”, learning rate
“invscaling”, tol = 0.0001, o = 0.0001, and solver = “Ibfgs”. The solver
for weight optimization in the boosted MLP was chosen to be “Ibfgs”,
which is an optimizer that falls into the category of quasi-Newton
methods.

The Decision Tree Regressor model utilized the following criteria:
splitter = “random”, max_depth = 80, min_samples_split = 3,
min_samples_leaf = 1, max_features = “log2”, criterion = “absolute_er-
ror”, random_state = 42.

Machine learning models have been proposed, including K-Nearest
Neighbor (KNN), Random Forest Regressor (RFR), Gradient
Boosting Regressor (GBR), Decision Tree Regressor (DTR), and
the multilayer perceptron (MLP) neural network model. These
models were developed to analyze the interaction energies of the
cation and anion alongside the yield (% FAME) of the catalytic
activity of 65 ionic liquids employed by researchers for the
esterification/transesterification of various oils. The effectiveness
and accuracy of each model were assessed based on statistical factors,

https://doi.org/10.1021/acsengineeringau.5c00098
ACS Eng. Au XXXX, XXX, XXX—-XXX


https://pubs.acs.org/doi/suppl/10.1021/acsengineeringau.5c00098/suppl_file/eg5c00098_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsengineeringau.5c00098/suppl_file/eg5c00098_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsengineeringau.5c00098/suppl_file/eg5c00098_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsengineeringau.5c00098/suppl_file/eg5c00098_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsengineeringau.5c00098/suppl_file/eg5c00098_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsengineeringau.5c00098/suppl_file/eg5c00098_si_001.pdf
pubs.acs.org/engineeringau?ref=pdf
https://doi.org/10.1021/acsengineeringau.5c00098?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

including the correlation coefficient (R*), mean absolute error
(MAE), and root-mean-square error (RMSE). The results were
compared, and the model demonstrating the best performance
according to the statistical criteria was selected.

2.5.1. Analysis of Sigma Profile Surface Area Segments
(Molecular Descriptors). Sigma profiles are molecular descriptors
that represent the polarity of molecules and, consequently, their
capacity to form and engage in intermolecular interactions such as
hydrogen bonds. A sigma profile is a probability distribution of the
surface charge density of a molecule or mixture.*>**

Torrecilla et al.** demonstrated how the & profile qualitatively
describes the different electronic nature of cations and anions. The
authors showed that the charge distribution area beneath the o profile
can serve as a suitable molecular descriptor of solvent properties, with
the significant advantage of being a parameter derived from quantum
chemistry defined within a limited polarity scale (+0.025 e/A* for
most compounds). These researchers, considering the 61 levels of
charge distribution p*(c), defined the o-profile of ionic species in ILs
within the range of +0.03 e/A? producing 61 values of the So profile.
The work contributed to the development of a neural network model
for predicting the toxicological effect of ILs on a rat leukemia cell line
(Log ECso IPC-81) across a diverse range of compounds including
imidazolium, pyridinium, ammonium, phosphonium, pyrrolidinium,
and quinolinium ILs.

In the work of Alkhatib et al,*® the o profiles generated were
divided into eight regions, each featuring a step size of 0.00625 e/A2
These regions were utilized to calculate the molecular descriptors,
specifically the So profile, as integrals of the area under the curves of
the o profile across these eight regions. As noted, researchers have also
segmented the sigma profile into several parts to provide a more
comprehensive description of the hydrogen bond interactions.
Moreover, Hsieh et al*’” proposed separating the sigma profile into
a non-hydrogen bonded hydroxyl group and a nonhydroxyl group.

In this work, the sigma profiles of 65 ILs were obtained and
categorized into five distinct regions within the range of —3.00 to
+3.00 with the intervals of approximately 1.2 e/A% The surface
shielding charge area of each region is obtained through integration,
similar to how the o profile is imported into Aspen Plus software by
using the COSMO-SAC thermodynamic model.

Two approaches were employed to analyze the areas under the
curve of the ILs concerning the yield (FAME). In the first approach,
the areas of the cation and anion of each IL were summed, resulting in
a total of five areas representing the combined cation and anion
regions (Sica Sacar Sscar Sscar and Ssca) as illustrated in Figure 2.
The calculated values for each area are presented in Table S4
(Supporting Information). In the second approach, each area of the
cation and anion was utilized in the model, totaling five areas of the
cation and five areas of the anion of the IL (S;¢, S»c, S3cr Sscr Sscr S1ar
Syar S3ar S4ar and Sgu) as presented in Figures 3 and 4. Table SS shows

Sz i S3 S4 SS
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Figure 2. Area segments of the model sigma profile of the ionic liquid
[L-Arginine][Acetate], Sc, approach: @ L-arginine, A acetate,
continuous line is just for orientation.

the calculated values for the areas of the cation and anion. The
experimental data set was randomly divided into training (80%) and
test (20%) subgroups.
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Figure 3. Area segments of the model sigma profile of the cation [L-
arginine], Sc_ approach.
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Figure 4. Area segments of the model sigma profile of the anion
[Acetate], Sc. approach.

To calculate the area under the curve, the Scipy.integrate function
utilizing the Simpson integration method was employed. Following a
comprehensive evaluation of the statistical and predictive capabilities
of the ML model, the pickle format/module was used to serialize the
model into a file for future access. The dump() function was applied
to write a Python object to a file for subsequent use. The Joblib library
was utilized to save the trained model, which was employed to
determine the yield (% FAME) of the ILs of interest by importing the
areas under the sigma profile curve of these ILs as input data. A total
of 298 ILs were analyzed, primarily focusing on those based on amino
acids, ammonium, acids, and imidazolium, which featured cations and
anions relevant to the research objectives.

2.5.2. Criteria for Evaluating Models. The effectiveness,
performance, and accuracy of the model were analyzed according to
statistical factors, such as the coefficient of determination (R*), the
mean absolute error (MAE), and the root-mean-square error
(RMSE). In the following equations, according to Chicco et al,®® x,
is the i predicted value, and the element y; is the i actual value. The
regression method predicts the x; element for the corresponding y;
element of the ground truth data set. It defines the constanty as the
average of the true values, eq 11.

no (11)

X6 -y (12)
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Figure S. Interaction energies of ionic liquids vs FAME yield.

The coefficient of determination (R?) defined by Wright in 1921 can
be interpreted as the proportion of the variance in the dependent
variable that is predictable from the independent variables, eq 12.>°

The mean absolute error (MAE) represents the average of the
absolute values of the errors that indicate the deviation from the true
probability. This is mathematically expressed in eq 13.

Xk -y

n (13)
On the other hand, the root mean squared error (RMSE) is a popular
performance evaluation metric for models because it is interpretable

as the standard deviation of prediction errors. This is written by
Otchere et al.*® as is shown in eq 14.

2?:1 (% — 2')2
n (14)

MAE =

RMSE =

Considering the FAME yield predictions from the ML model were
considered, other parameters were analyzed, including the chemical
structures of the cation and anion, the cost of the reagents, their
availability in the laboratory, and the difficulty of the synthesis. Based
on these criteria, three ILs were selected: [L-arginine][Acetate]
(Figure S4), [L-arginine][NO,] (Figure S5), and [L-arginine] [HSO4]
(Figure S6) to be synthesized and characterized by 'H and '*C NMR
(Supporting Information).

2.6.1. Synthesis of Protic lonic Liquids (PILs). The synthesis of
amino acid—based PILs was achieved using the Bronsted acid—base
neutralization method proposed by Sharma et al.** and Martins et
al,*® with a molar ratio of 1:1.2 (cation:anion). In summary, the
aqueous solutions of L-arginine were placed in a three-neck round-
bottom flask (in an ice bath) under stirring, equipped with a
condenser at 12 °C and a drip funnel at the center of the flask. The
acid was added drop by drop using the dropping funnel at
approximately 283.15 K until all of the acid was added. After the
acid was added, the reaction mixture was stirred for 24 h at room
temperature under a nitrogen atmosphere. Once the reaction was
complete, the mixture was evaporated at 60 °C and SO mbar for 5 h to
concentrate the IL. Finally, the reaction mixture was dried for 36 h at
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323.15 K using a high vacuum pump. Figure S4 of the Supporting
Information illustrates the experimental setup.

2.6.2. Characterization of PILs by 'H and '3C Nuclear
Magnetic Resonance. The synthesized PILs were characterized by
using NMR spectral techniques (‘H and '*C) on a Bruker Avance III
300 MHz spectrometer with S mm glass tubes. A total of SO mg of
sample was used in 500 yL of deuterium oxide (D,0/2H,0) as the
solvent. A capillary containing a solution of sodium fluoride (NaF), 4
mg in S mL of D,0, was placed in each glass tube and served as an
external reference.

The literature indicates that Hammett acidity (H,) is the
primary parameter that most researchers agree accounts for the
catalytic activity of a family of ionic liquids, as illustrated in
Figure S1 of the Supporting Information.

The research by Gao et al.”® demonstrates that the IL
[Im(N(CH,);SO;H),][HSO,], which has a H, of 0.85,
exhibits superior catalytic performance with an 86% FAME
yield compared to other IL with higher acidity that were
studied. Similarly, Masri et al.*' reported enhanced catalytic
properties with the IL [TMEDADBS][HSO,],, which has an
H, of 2.370 and an FAME yield of 59%.

Tankov et al." synthesized protic IL, demonstrating that the
synthesis of FAME was influenced by acidity, with yields of
53% using the catalyst pyridinium hydrogen sulfate (H, of
1.62), pyridine nitrate (H, = 1.84) yielding 12%, and 4-amino-
1H-1,2,4-triazolium nitrate (H, = 2.56) yielding 5%. Li et al.*®
developed functionalized IL based on ethanediamine (EDA),
diethylenetriamine (DETA), triethylenetetramine (TETA),
and tetraethylenepentamine (TEPA). The H, results were
0971 for [EDA-PS][HSO,], 0.981 for [DETA-PS][HSO,],
0.980 for [TETA-PS][HSO,], and 0.992 for [TEPA-PS]-
[HSO,4]. The FAME vyield ranked as follows: [EDA-PS]-
[HSO,] (41%) > [DETA-PS][HSO,] (39%) > [TETA-
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Table 1. Cation and Anion Interaction Energies of Ionic Liquids

Eiseiec Eype Eawe
E isicc 1.00000 —0.12476 —0.19411
Eyne —0.12476 1.00000 —0.02261
E, qwc —0.19411 —0.02261 1.00000
E iciea 0.731978 —0.00811 0.13886
Eyna —0.16901 0.673807 —0.16338
E qwa 0.291424 —0.28261 0.11418
FAME yield 0.120288 —0.01722 —0.21125

PS][HSO,] (36%) > [TEPA-PS][HSO,] (34%). The authors
concluded that Hammett’s acidity was the main parameter
affecting catalysis.

Moreover, Fan et al.'” analyzed the influence of the
[HSO,]™ anion on the synthesis of FAME from oleic acid.
The results indicated that Hammett’s acidity affected the yield
of FAME. The following results were obtained: [TMEDAPS]-
[HSO,] (H, = 1.93, yielding 95%), [TMPDAPS][HSO,] (H,
= 1.90, yielding 95%), [TMHDAPS][HSO,] (H, = 1.84,
yielding 96%), and [MIMPS][HSO,] (H, = 2.29, yielding
87%).

Figure S1 illustrates various families of ILs featuring different
anions, such as NO;, HSO,, CF;SO;, CH;SO;, CF;SO;5, and 1-
arginine. As shown, there is no clear correlation between
Hammett’s acidity and FAME yield. Therefore, the analysis
indicated that Hammett acidity is not the sole parameter that
should be considered to explain specific behavior.

There are additional physicochemical and structural proper-
ties that could enhance our understanding of the catalytic
capacity of ILs. The literature indicates that Hammett’s acidity
is not a property often reported by researchers, since it is
measured through spectrophotometric methods. This limi-
tation hindered the analysis and correlation between the yield
and the acidity of different ILs. Therefore, it is proposed to
utilize a computational tool to predict the acidity of ILs with
demonstrated catalytic capacity, as noted in the literature.

After analyzing the influence of Hammett acidity on the yield
of fatty acid methyl ester synthesis, the acidity («) of the
hydrogen bonding in the interaction energies of ILs was
determined using a predictive computational tool. The
experimental acidity is well represented by a three-parameter
model based on hydrogen-bonding energies (Eyy), electro-
static-misfit interactions (E,g), and van der Waals forces
(E,q) in relation to the interaction energies of ILs (R* =
0.9441) as compared to the data of Kurnia et al.”’
Consequently, this model was employed to predict the acidity
of the hydrogen bonds in ILs.

As illustrated in Figures S2 and S3 (Supporting Informa-
tion), the relationship between the acidity calculated by
COSMO-RS and the yield in FAMEs cannot be determined.
Therefore, it is suggested that alternative criteria. Despite using
experimental data from the literature along with the predictive
model, sufficient information could not be gathered to define a
relationship between the acidity and FAME yield.

3.2.1. Linear Model. Figure 5 shows data on the molecular
interaction energies of ILs obtained from the COSMOtherm
calculations. Initially, it was evident that this model type was
inadequate for illustrating a correlation between the
independent and dependent variables. This inadequacy arises
because the interaction energies are derived from the average
charge density distribution on each molecule’s surface, making

Eiseiea Eiipa Eawa FAME yield
0.731978 —0.16901 0.291424 0.120288
—0.00811 0.673807 —0.28261 —0.01722
0.13886 —0.16338 0.11418 —0.21125
1.00000 —0.10285 —0.09846 0.117047
—0.10285 1.00000 —0.11586 —0.04583
—0.09846 —0.11586 1.00000 —0.33477
0.117047 —0.04583 —0.33477 1.00000

it impossible to obtain complete and comprehensive
information about each IL. Therefore, it is suggested to
implement more robust ML models that enhance the
resolution between the independent and dependent variables.
Proposed ML models include K-Nearest Neighbor (KNN),
Random Forest Regressor (RFR), Gradient Boosting Re-
gressor (GBR), Decision Tree Regressor (DTR), and the
Multilayer Perceptron (MLP) neural network model.

3.2.1.1. Correlation between Interaction Energies and
Yield. The Pearson correlation matrix is presented in Table 1.
Each cell in the matrix indicates the correlation coeflicient
between each pair of variables, with values ranging from —1
(perfect negative correlation) to 1 (perfect positive correla-
tion). This visualization assists in identifying the variables with
the strongest relationships. The correlations are classified as
follows: high >0.7; moderate between 0.5 and 0.7; low
between 0.3 and 0.5; and no correlation between 0 and 0.3.

The E_;, energies of the cation and anion, although not
highly correlated, significantly influenced the yield. Conversely,
the Eyp and E, 4, of the cation and anion exhibited a strong
correlation with each other. This is also evident in the heatmap
(Figure 6), where the E,, energies displayed a greater color
intensity, indicating the high correlation between these
energies (shown in red).

FAME yield

Enpc
Enﬂ" [
Evdﬁ:-i

. . E mr'm;:-l

W Ec

E e
Emc|{ N
E,iwe .
E niisgis .
Eggy -I -0.25

Eyan4 -0.50
FAME yield

W Em
=1
g

Figure 6. Correlation shown in heatmap.

3.2.1.2. Variance Inflation Factor. Multicollinearity refers
to a situation in which one or more explanatory variables
(predictors) in a multiple regression model are related to each
other and, similarly, related to the response variable.** The
variance inflation factor method was applied to address
multicollinearity, which occurs when two independent
variables are correlated with each other, complicating the
interpretation of the results. In this study, no characteristics
were removed because the VIF was not greater than 5 among

https://doi.org/10.1021/acsengineeringau.5c00098
ACS Eng. Au XXXX, XXX, XXX—-XXX


https://pubs.acs.org/doi/suppl/10.1021/acsengineeringau.5c00098/suppl_file/eg5c00098_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsengineeringau.5c00098/suppl_file/eg5c00098_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.5c00098?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.5c00098?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.5c00098?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.5c00098?fig=fig6&ref=pdf
pubs.acs.org/engineeringau?ref=pdf
https://doi.org/10.1021/acsengineeringau.5c00098?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Table 2. Models Trained with the Cation and Anion Interaction Energies Approach for Ionic Liquids

training data test data
models MAE RMSE R MAE RMSE R
LM 14.9240 394.7012 0.1827 16.5399 337.5208 0.2169
KNN 2.1600 60.7400 0.8742 12.2075 224.5055 0.4791
RFR 2.3611 60.8860 0.8739 12.5364 213.9963 0.5035
MLP 2.1617 60.7400 0.8742 11.1822 210.4090 0.5118
GBR 2.8277 61.5220 0.8726 10.7017 166.5553 0.6136
DTR 4.7534 87.3573 0.8191 10.9854 173.5125 0.5974
Linear Regression Random Forest Regressor Decision Tree Regressor
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Figure 7. Predicting FAME performance using machine learning models.

two or more variables, as shown in Table S6 (Supporting
Information).

3.3. Machine Learning Models. Table 2 presents the
calculated values of the statistical parameters (R%, RMSE and
MAE) for the LM, KNN, RFR, MLP, GBR, and DTR models.
As shown, the regression coefficients for the RFR, DTR, and
GBR models were 0.5035, 0.5970, and 0.6136 for the test
values, respectively.

The R* of 0.6136 indicates that 61.36% of the variation in
the output variable can be explained by the input variables.
The models that achieved the highest statistical resolution
during the training method were KNN, MLP, and RFR;
however, when applied to the test data, the performance was
superior for the DTR and GBR models. Consequently, the
GBR model was selected as the predictor model for the next
stage as it demonstrated the best statistical performance during
the test phase, exceptional performance during the training
phase, and the lowest mean absolute error. This is illustrated in
Figure 7, which shows that the GBR model for the test method
had the best predictive performance based on the R?, MAE,
and RMSE statistical factors.

The o profile diagram is divided into three regions. The ¢ <
—0.0082 e/A”* region indicates that the substance has a strong
ability to form hydrogen bonds and serves as a hydrogen bond

100 20 40 60

Actual yield [%)

80 100

donor region. The —0.0082 e/A* < ¢ < +0.0082 e/A? region
signifies molecular symmetry and is classified as an apolar
region. In the ¢ > +0.0082 e/A? region, this indicates that the
substance has a strong capacity to accept hydrogen bonds and
functions as a hydrogen bond acceptor region. The further the
peak of the o profile curve is from the line 6 = +0.0082 e/A?,
and the larger the peak area, the stronger the corresponding
property.45

To explain the interpretation of the sigma profile, the L-
arginine cation molecule serves as a model (Figure 8). In these
calculations, the COSMO continuous solvation model is
employed to simulate a virtual conductive environment for
the molecule, inducing an ¢ polarization charge density at the
interface between the molecule and the conductor, specifically
on the molecular surface. This results in a more polarized
electron density compared to that in a vacuum. The 3D
distribution of the polarization charges ¢ of each molecule is
transformed into a surface composition function (o-profile)
obtained by using the COSMOtherm program. This o-profile
indicates the relative amount of o-polarized surface on the
molecule, giving detailed insights into the distribution of
molecular polarity.'® The ¢ profile of the L-arginine cation
molecule features a peak in the strongly negative polar region
(hydrogen bond donor) at —0.021 [e/A?], primarily associated
with the guanidine N = H group, along with two peaks in the
apolar region at —0.007 [e/A?] and +0.003 [e/A?], and a peak
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Figure 8. Relation between charge distribution and sigma profile for L-arginine molecule chemical structure.

in the strongly positively polar region (hydrogen bond
acceptor) at +0.001 [e/A?], corresponding to the COOH
carboxylic group. Additionally, it is evident that the molecule is
more inclined to donate hydrogen bonds than to accept them.

3.4.1. Analysis of Sigma Profile Area Segments. Once
the interaction energies with the ML models were analyzed,
the GBR model was applied in two different approaches (Sca
and Sc,) that could impact the resolution of the FAME
predictions, as developed by Torrecilla et al.>> and Alkhatib et
al*® using ML models for a similar purpose. At this stage, the
model considered 75% of the data for training and 25% for
testing. The parameters used in the model are n_estimators =
100, max_depth = 4, max_features = log2, min_samples_leaf =
1, min_samples_split = 2, criterion = “squared_error”, “squar-
ed_error”=0.1, tol = 0.0001.

The GBR model, which analyzes the area under the o profile
curve of ILs, proved to be more efficient than the model that
focuses on the interaction energies of ILs. Each of these
energies independently represents an average of the energy
contributions from the molecular interactions described by the
surface charge density of the molecule. For instance, the
hydrogen bond energy aggregates the energy densities in the
hydrogen bond donor (Eygp) region and the hydrogen bond
acceptor (Eyg,) region. Thus, in analyzing the intermolecular
interactions described by the surface energy densities in the
three-dimensional distribution, it is assumed that these were

insufficient, from a physical standpoint, to establish a
correlation with the dependent variable (FAME yield).

Representing this information about the three-dimensional
distribution of the molecules, the o profile is derived in two
dimensions. By utilization of the ¢ profile, it became possible
to segment the distribution of energies into areas correspond-
ing to energy types that are specific to the polar or apolar
structures of the molecule. Five areas for each cation and anion
were defined and included in the model independently, as
illustrated in Figure 8. This set of energy areas under the ¢
profile curve represents the molecular interactions of each
molecule and may provide a more comprehensive description
of hydrogen-bonding interactions, as the molecular surface
segments are arranged with distinct charge density in each area
segrr1<>.1.r1t.3’7’46

In the calculated areas for different molecules, a fraction of
the area derived information from Eypp, Eypp + Emisiv Emiseie +
E.aws Emisse + Enpa, and Eggy. In other words, by employing
this area approach, the ML models demonstrated greater
accuracy than those relying solely on the information about
molecular interactions (Eyp, Eniay and Eyqw), likely because
this set of energy areas under the o profile curve illustrated the
molecular interactions of each molecule in a more
comprehensive and realistic manner. Moreover, this analysis
of area segments positively contributed to the ML model, as
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Table 3. Models Trained with GBR Using Two Approaches

approaches training data test data
models MAE RMSE MAE RMSE R?
(1) Sca 2.0254 47.8152 0.9038 72301 81.0117 0.795S
(2) Sca 2.1948 48.0126 0.9034 5.8854 64.5684 0.8370

the GBR model performed better and was therefore more
accurate according to the defined statistical criteria.

The Sca and Sc., approaches are also discussed. Although
these methods are statistically different, the S, approach has
a greater impact on predicting FAME. This indicates that the
molecular interaction energies obtained from each area
segment calculated in the Sc, approach represent each polar
or apolar region of the molecule in a single area formed by the
respective cation and anion, resulting in five areas that were
used as inputs to train and validate the model. However, in the
Sc.a approach, the energy area segments possess their own
areas and energy charge density. Therefore, this approach
allowed for the analysis of 10 area segments as the input for the
model.

By analyzing the results and using the statistical parameters
MAE, RMSE, and R? it is evident that the GBR model (3)
achieves a 22.34% improvement in prediction during the
testing phase compared to the GBR model (1), as shown in
Table 3. Additionally, this demonstrates better statistical
performance during the training phase. Conversely, when
examining the GBR model alongside the Sc, and Sc.,
approaches, as illustrated in Figure 9ab, respectively, it is
observed that the GBR model (2) provides a 4.15% higher
prediction, indicated by the R compared to the GBR model
(1). This is further demonstrated in Table 3, which shows that
the Sc.4 approach offers a better fit for two data sets during the
testing phase.

The ILs and their corresponding predictions in FAME are
provided in Table S7 of the Supporting Information. ILs based
on amino acids, inorganic acids (HSO,, HNO;), and
carboxylic acids such as acetic and propanoic acids exhibit
high performance predictions using the ML model. Following
the criteria outlined in the methodology, the ILs [L-
arginine][Acetate], [L-arginine][HSO;], and [L-arginine]-
[NO;] were chosen for their synthesis and characterization.
The characterization of ionic liquids can be found in the
Supporting Information (Figures S4—S6).

In this study, a machine learning model was developed to
predict fatty acid methyl esters in a series of ionic liquids
utilizing molecular data from COSMO calculations. The
results presented highlight the effectiveness of two machine
learning models in predicting the performance of fatty acid
methyl esters (FAME) in ionic liquids. The Gradient Boosting
Regressor model using the S, approach demonstrated
superior performance and statistical accuracy in FAME
prediction. Both the COSMO-RS thermodynamic model and
the machine learning models can be combined to forecast the
performance of fatty acid methyl esters (FAME). The ionic
liquids [r-arginine][Acetate], [L-arginine][HSO;], and [L-
arginine][NO;] were synthesized and characterized using
nuclear magnetic resonance (NMR 'H, '*C), along with the
prediction criteria from the Gradient Boosting Regressor
machine learning model on the Jupyter Notebook computing
platform using the Python programming language. The
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Figure 9. GBR model using the (a) Sc, and (b) Sc. approach.
optimized GBR (Sc,) model can reliably and accurately

predict ionic liquid FAMEs and assist in selecting ionic liquids
with a suitable catalytic capacity for FAME synthesis.

Data will be made available on request.
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