

Supplementary Information

Waste-to-Waste Valorization: Sustainable Palladium Recovery from Real Spent Catalytic Converter Leachates Using Chicken Feathers

Amir Nobahar¹, Flavia N. Braga^{1,2}, Filipe H. B. Sosa¹, Nicolas Schaeffer¹, João A.P. Coutinho¹, Helena Passos^{2*}

¹CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal

²LSRE-LCM, ALiCE, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

*Corresponding author: hpassos@fe.up.pt

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 **1. Experimental**

32 ***1.1. Materials***

33 Standard metal solutions of 1000 mg.L⁻¹ were purchased for Pt in 0.5 M HCl (BDH Chemicals
34 Ltd, Poole, England) and Rh in 5% HCl (Sigma–Aldrich, Switzerland). Stock solutions of 1000
35 mg.L⁻¹ of Pd, Fe, Zn and Ce, were prepared by dissolving proper quantities of analytical-grade
36 reagents, including PdCl₂ (Sigma–Aldrich, USA), FeCl₃ (Thermo Fisher, Germany), ZnCl₂
37 (Thermo Scientific, USA), and CeCl₃·7H₂O (Merck, Germany), in deionized water.

38 Ethanol (96%) was purchased from Carlo Erba Reagents (RE–Pure), while thiourea (99% purity)
39 was supplied by Acros Organics. Technical grade sodium hydroxide and sulfuric acid (95–97%)
40 were obtained from VWR Chemicals. Hydrochloric acid (~37%, analytical reagent grade) was
41 supplied by Fisher Scientific, and nitric acid (≥65%) along with the Yttrium standard (996 mg/L
42 ± 4 mg/L in nitric acid, TraceCERT) were sourced from Sigma–Aldrich. Silicone solution (in
43 isopropanol) was acquired from Serva Electrophoresis GmbH, and poly(vinyl alcohol) (87–90%
44 hydrolyzed, average molecular weight: 30,000–70,000) was also provided by Sigma–Aldrich.
45 Working solutions of lower concentrations were systematically prepared by diluting the main
46 stock solutions as required.

47 Urea (≥99.5% purity) for analytical use was obtained from Acros Organics. Dithiothreitol (DTT)
48 was purchased from NZYTech and stored dry at –20 °C. Iodoacetamide (BioUltra grade) was
49 sourced from Sigma Life Science. All reagents were of analytical or molecular biology grade and
50 used without further purification.

51 CFs were collected from Campoaves Company in Oliveira de Frades, Portugal.

52 Starting SACCs materials were provided by the Portuguese company VALORCAR (Sociedade
53 de Gestão de Veículos em Fim de Vida, Lda., Aveiro, Portugal). Four end-of-life SACCs
54 materials were obtained for this experimental work: (1) a SACC from a Volkswagen Golf III
55 (1991–1999 production model) with a gasoline engine; (2) a Peugeot 106 (1991–2004 production
56 model) with a gasoline engine; (3) a SACC from a Renault Clio II (1998–2002 production model)
57 with a diesel engine; and (4) a diesel particulate filter (DPF) from a diesel engine in a silicon
58 carbide (SiC) matrix.

59

60 ***1.2. Characterization of the adsorbent***

61 The adsorbent before and after adsorption was characterized using a variety of analytical
62 techniques. The particle size distribution of the ground CF was determined using a laser scattering
63 analyzer (HORIBA LA–960, HORIBA Scientific, Japan) operating in Fraunhofer mode. Zeta–
64 potential measurements were performed using a laser Doppler electrophoresis analyzer (Malvern
65 Zetasizer). Suspended CF samples were measured at 25 °C in disposable cells following standard
66 electrophoretic mobility protocols. Raman spectroscopy was performed using a FT–RAMAN

67 BRUKER MultiRAM spectrometer. The analysis utilized a Nd–YAG laser with a wavelength of
68 1064 nm and a power of 50 mW. The spectral resolution was set at 4 cm^{-1} , with 1000 scans
69 collected over a range of 4000 to 50 cm^{-1} . Fourier Transform Infrared (FTIR) spectroscopy was
70 conducted in the spectral range of 4000–400 cm^{-1} using a FTIR system spectrum BX,
71 PerkinElmer, equipped with a single horizontal Golden Gate ATR cell and a diamond crystal.
72 The morphology and elemental composition of CFs before and after the sorption process were
73 evaluated using scanning electron microscopy coupled with energy-dispersive spectroscopy
74 (SEM–EDS) on a HITACHI SU–70 apparatus operating at 25 kV, following carbon sputter–
75 coating. Scanning transmission electron microscopy (STEM) was performed on a Hitachi HD–
76 2300 operated at 200 kV. Samples were dispersed in ethanol, sonicated for 5 min to break up
77 agglomerates, and drop–cast onto carbon–coated copper grids. Imaging was conducted under
78 slow–scan conditions (20 s per frame) with emission currents of 6–9 nA.
79 X–ray photoelectron spectroscopy (XPS) was conducted using a Thermo Scientific NEXSA
80 system equipped with a monochromatized Al $\text{K}\alpha$ X–ray source (photon energy: 1486.6 eV). Due
81 to the non–conductive nature of the samples, surface charging was minimized using a dual
82 neutralization system: a low–energy electron flood gun (0–14 eV) and a low–energy argon ion
83 source. Measurements were performed at a photoelectron take–off angle of 90° relative to the
84 sample surface. Data were acquired in constant analyzer energy (CAE) mode with a pass energy
85 of 100 eV for survey spectra and 20 eV for high–resolution spectra. All spectra were charge–
86 corrected by referencing the C 1s hydrocarbon peak to 284.80 eV. Surface elemental compositions
87 were calculated using standard Scofield photoemission cross sections.
88 Circular dichroism (CD) spectra were recorded using a JASCO J–1500 spectropolarimeter
89 equipped with a PM–539 detector and a PTC–517 temperature–controlled cell holder.
90 Measurements were carried out in the 190–280 nm range with a 0.5 nm data pitch, 1.00 nm
91 bandwidth, and a 4 s integration time. Spectra were acquired in CD, HT, and absorbance modes
92 with 2–3 accumulations at 23.2–23.4 °C, using CA as the solvent.
93 Elemental analysis was carried out to determine the carbon, hydrogen, nitrogen, and sulfur
94 contents (expressed as weight percentages) using a Truspec Micro CHNS 630–200–200 elemental
95 analyzer. Approximately 1 mg of sample was used for each measurement. The combustion
96 furnace was set to 1075 °C, and the afterburner operated at 850 °C. Carbon, hydrogen, and sulfur
97 were quantified by infrared absorption, while nitrogen was measured using a thermal conductivity
98 detector.
99 Thermogravimetric Analysis (TGA) was performed using a NETZSCH STA 409 PC/PG
100 instrument. Approximately 8 mg of raw CFs and CFs after Pd adsorption (from tests with
101 synthetic Pd mono–metallic solution containing $(15 \pm 1) \text{ mg.L}^{-1}$ of Pd) were placed in an alumina
102 crucible. Tests were carried out under a nitrogen gas purge of 50 $\text{mL}\cdot\text{min}^{-1}$. The temperature was
103 ramped from 50 °C to 900 °C at a heating rate of 10 $\text{K}\cdot\text{min}^{-1}$.

104

105 *1.3. Probing the Role of Amino and Disulfide Groups in Pd Adsorption*

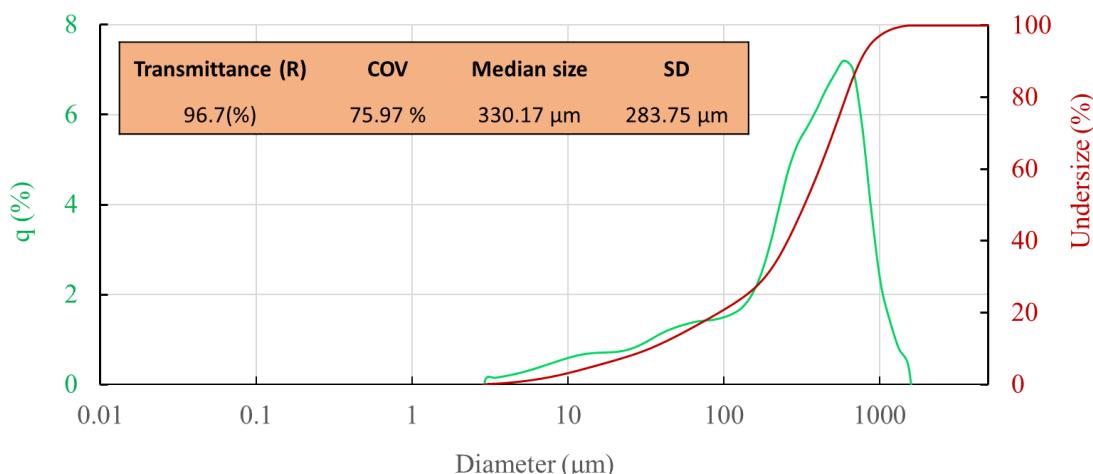
106 To identify the involved functional groups in Pd adsorption, two tests were performed, in which
 107 amino groups and disulfide bonds were deactivated. Pd adsorption tests by CF were performed
 108 with a solution containing 15 mg.L^{-1} of Pd, with pH adjusted at 5. At this pH, due to isoelectric
 109 point of CF (4.4 (Škerget et al., 2023)), amino groups are neutral and not positively charged,
 110 therefore cannot have a role in Pd adsorption. In the next test, CF were subjected to a chemical
 111 treatment designed to cleave disulfide linkages and cap the resulting thiol groups. Initially, CF
 112 were immersed in a solution containing 8 M urea and 100 mM dithiothreitol (DTT) at pH 8.5.
 113 The mixture was stirred at 50 °C for 6 h to reduce and cleave disulfide bonds. Following the
 114 reduction, iodoacetamide (IAM) was added to the solution at a final concentration of 250 mM to
 115 alkylate the free thiol groups, thereby preventing reformation of disulfide bonds. This reaction
 116 was conducted in the dark to avoid light-induced degradation or side reactions. After 1 h of
 117 incubation, cold ethanol (−20 °C) was added at a 1:3 volume ratio (sample:ethanol) to precipitate
 118 the protein material. The mixture was kept at −20 °C for 1 h, followed by centrifugation to collect
 119 the precipitate. The resulting pellet was washed three times with acetone to remove residual
 120 reagents and solvents. The final pellet, consisting of treated CF with capped thiol groups, was
 121 dried and subsequently used in Pd adsorption experiments.

122

123

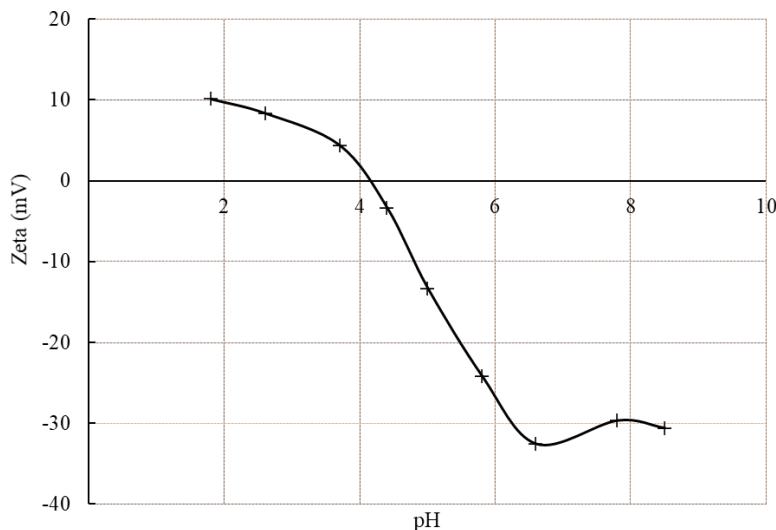
124 *1.4. Desorption studies*

125 CF containing PGM, obtained under optimized adsorption conditions (0.2 M HCl, 303 K, and a
 126 6-h contact time), were used in these experiments. To determine the total metal loading of CF
 127 after adsorption, a known mass of the CF sample was dissolved in aqua regia, and the
 128 concentrations of Fe, Zn, Ce, Pt, Pd, and Rh in the resulting solution were quantified (in triplicate).
 129 Subsequently, metal desorption from the same CF was performed using various desorption agents,
 130 including HCl (0.5, 1.0, 2.0, and 3.0 M), NaOH (0.5, 1.0 and 2.0 M), thiourea (0.2, 0.5, and 1.0
 131 M) in 0.05 M HCl, and 0.2 M thiourea combined with HCl (0.03, 0.2, and 0.5 M). These tests
 132 were performed in triplicate at 303 K, at 150 rpm, and for 6 h. Finally, samples were filtered, and
 concentrations of metals were analyzed.


133 The desorption efficiency (D %) of each metal was then calculated as the percentage of the total
 134 adsorbed metal released into solution by each desorption agent, using the Equation S1:

$$135 \quad D(\%) = \frac{C_d V_d}{q_{ads} m} \times 100 \quad (\text{Eq. S1})$$

136 where C_d (mg.L^{-1}) is the concentration of metal in the desorption solution, V_d (L) is the volume
 137 of the desorption solution, q_{ads} (mg.g^{-1}) is the amount of metal previously adsorbed on the
 138 adsorbent, and m (g) is the mass of the adsorbent used.


140 **2. Results and discussion**141 **2.1. CF particle size distribution and zeta potential**

142 Laser-diffraction analysis of the ground CF showed a broad particle-size distribution, with a
 143 median diameter (D₅₀) of 330 μm and wide spread (D₁₀ = 33 μm ; D₉₀ = 756 μm), indicating
 144 the heterogeneous fragmentation produced by mechanical grinding. The full distribution curve
 145 and numerical parameters are presented in Figure S1.

147 **Figure S1.** Particle size distribution of ground CF used in this study, measured by laser scattering.
 148 Median diameter = 330 μm ; D₁₀ = 33 μm ; D₉₀ = 755 μm .

150 CF showed positive zeta potentials (Figure S2) at low pH (from +6 to +10 mV at pH 1.8–2.6),
 151 became near neutral around pH 4.3–4.4, and shifted to strongly negative values above pH 5 (−25
 152 to −35 mV).

153

154

155

Figure S2. Zeta potential of CF as a function of pH.

156

157

2.2. Adsorption kinetics

158

159
160
161

Table S1. Kinetic parameters obtained from nonlinear pseudo-first-order, pseudo-second-order, and Weber–Morris intraparticle diffusion (IPD) models for the adsorption of Pd, Pt, and Rh onto CFs, along with their corresponding correlation coefficients (R^2).

		Pd	Pt	Rh
	q_e, exp (mg.g $^{-1}$)	14.67 ± 0.45	3.22 ± 0.14	1.61 ± 0.07
	q_e, cal (mg.g $^{-1}$)	13.98	3.11	1.46
Pseudo–first order model	R^2	0.97	0.96	0.94
	k_1 (min $^{-1}$)	0.060	0.032	0.004
	q_e, cal (mg.g $^{-1}$)	14.70	3.32	1.64
Pseudo–second order model	R^2	0.99	0.97	0.97
	k_2 (g.mg $^{-1}$.min $^{-1}$)	0.006	0.004	0.003
	k_1 (mg.L $^{-1}$.s $^{-1/2}$)	2.06	0.35	0.01
Weber–Morris model	R^2	0.98	0.86	0.86
	k_2 (mg.L $^{-1}$.s $^{-1/2}$)	0.04	0.01	0.02
	R^2	0.58	0.30	0.95

162

163

2.3. Effect of initial metal concentration

165 **Table S2.** Isotherm model parameters obtained from fitting experimental data of Pd and Pt
166 adsorption onto CFs.

Model	Parameter	Pd	Pt
Langmuir	q_{\max} (mg.g ⁻¹)	19.61	3.13
	K_L (L.mg ⁻¹)	2.57	0.98
	R^2	0.98	0.91
Sips	R_L	0.03–0.16	0.04–0.22
	q_{\max} (mg.g ⁻¹)	18.85	4.11
	K_S (L.mg ⁻¹)	2.72	0.52
	n	1.46	0.44
Temkin	R^2	0.96	0.88
	K_T (L.g ⁻¹)	61.97	75.30
	b_T	6057.90	847.11
Freundlich	R^2	0.94	0.88
	K_F (mg.g ⁻¹)(L.mg ⁻¹) ^{1/n}	11.68	1.93
	n	4.81	5.54
	R^2	0.88	0.45

168 Furthermore, the separation factor (R_L), a dimensionless parameter, was calculated using the
169 equation below:

170
$$R_L = \frac{1}{1 + K_L C_0} \quad \text{Eq. (S2)}$$

171 where C_0 (mg.L⁻¹) is the initial concentration of adsorbate in the solution.

Table S3. Comparison of Pd adsorption performance of CF with previously reported low-cost bio-based adsorbents reported in acidic chloride media.

Adsorbent	Type / Source	Modification	Medium/ condition	q_{\max} (mg.g ⁻¹)	Pd selectivity	Reuse	Reference
Chicken feathers	Biowaste (keratin)	Unmodified	0.2 M HCl pH 0.79	19.61	>Pt >> Rh, Ce, Zn and Fe	Non-reusable	This work
Wool	Wool fabric	Chlorine-treated	pH 1	24.3	>Pt and Rh >> Cu, Ni	Non-reusable	(Akioka et al., 2021)
Fungal biomass	<i>Aspergillus</i> sp.	Unmodified	0.1 M HCl	4.3	Pt > Pd	5 cycles	(Godlewska-Żylkiewicz et al., 2019)
Terrestrial moss	<i>Racomitrium lanuginosum</i>	Unmodified	pH 5	37.2	Not reported	Non-reusable	(Sari et al., 2009)
Silica-alginate nanomaterial	sodium alginate + silica	Crosslinked with silicate	pH 3	12.5	>>Y ³⁺ , La ³⁺ , Cd ²⁺ , Co ²⁺ , Sr ²⁺ , Cs ⁺	Reusable	(Abd-Elhamid et al., 2023)
Chitin	Chitin waste	Unmodified	0.1 M HCl	2.8	Very low Pd affinity	Non-reusable	(Wang et al., 2021)
Thiourea-modified chitosan	Deacetylated chitin	Crosslinked with glutaraldehyde, grafted with thiourea	pH 2	57.1	Not reported	3 cycles	(Zhou et al., 2009)
Activated carbon	Commercial activated carbon	None (used as-received)	0.1 M HCl	42.4	Not reported	2 cycles	(Wojnicki et al., 2018)
			pH 0	30		≥ 3 cycles	(Zhang et al., 2023)

Thiazole-modified activated carbon	Commercial activated carbon	Grafted with 2-aminothiazole	pH 3	150	» Zn, Fe, Cd, Mn, Li, Co and Ni
------------------------------------	-----------------------------	------------------------------	------	-----	---------------------------------

174

175 **Table S4.** Comparison of Pd adsorption capacities of CF with commercial synthetic sorbents reported in acidic chloride media.

Adsorbent	Medium/condition	q_{\max} (mg.g ⁻¹)	Pd selectivity	Reuse	Reference
Chicken feathers	0.2 M HCl	19.61	>Pt >>Rh, Ce, Zn and Fe	Non-reusable	This work
Lewatit MonoPlus SR-7	0.1 M HCl	197	» Fe ³⁺ ≈ Cu ²⁺ ≈ Ni ²⁺ ≈ Zn ²⁺ ≈ Pb ²⁺ ≈ Co ⁺ ≈ Ca ²⁺ ≈ Na ⁺	≥ 5 cycles	(Wołowicz and Hubicki, 2012)
Varion ADAM	0.8 M HCl + 0.2 M HNO ₃	9.86	» base metals	Reusable	(Hubicki et al., 2009)
Lewatit MonoPlus MP600		55	Pt > Pd >> Rh » base metals	Reusable	
Puromet MTS 9200	Industrial HCl leachate	51	> Pt >> Rh >> Zn ²⁺ , Ni ²⁺ , Fe ³⁺ (Cu strongly competes)	Reusable	(Goc et al., 2024a)
Puromet MTS 9850		97	Pt ≈ Pd >> Rh » base metals	Reusable	
Lewatit MonoPlus TP 214	0.1 M HCl	241	» base metals	Non-reusable	(Won and Yun, 2013)

Chelite S	0.1 M HCl	260	» base metals	Reusable	(Zbigniew Hubicki and Wołowicz, 2009)
Amberlyst A21	0.1 M HCl + 1 M NaCl	27.9	» base metals	Reusable	(Z. Hubicki and Wołowicz, 2009)

177 **2.4. Effect of HCl concentration**

178 The distribution coefficient (K_d) for each metal was determined from the ratio between its
 179 concentration change in solution and the amount of adsorbent used. K_d was calculated using:

180
$$K_d = \frac{C_0 - C_e}{C_e} \times \frac{V}{m} \quad (\text{Eq. S3})$$

181 where C_0 and C_e (mg.L⁻¹) are the initial and equilibrium metal concentrations, V (L) is the solution
 182 volume, and m (g) is the mass of adsorbent.

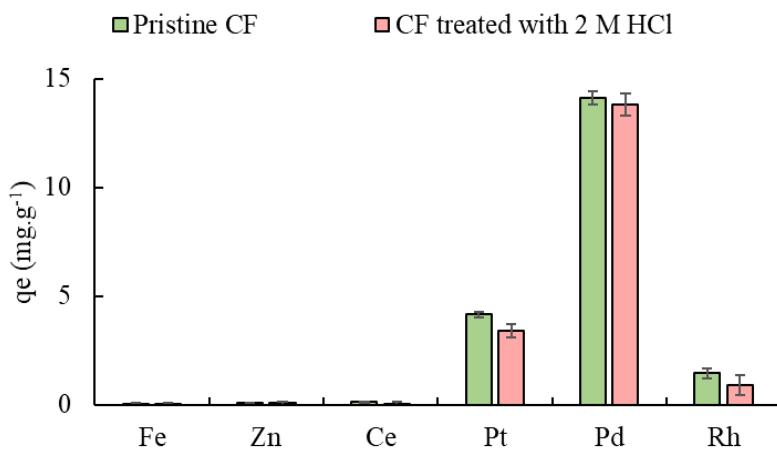
183 Selectivity coefficients (K) between Pd and other metals were obtained by taking the ratio of their
 184 distribution coefficients:

185
$$K_{Pd/Me} = \frac{K_{d,Pd}}{K_{d,Me}} \quad (\text{Eq. S4})$$

186 Values greater than 1 indicate preferential adsorption of Pd over other metals.

188 **Table S5.** HCl concentration effect on the distribution coefficient (K_d) and selectivity coefficient
 189 (K) of tested metals.

HCl conc. (M)		Metal					
		Pd	Pt	Rh	Ce	Zn	Fe
K_d (L.g ⁻¹)	0.04	34.23	0.91	0.22	8.37×10^{-3}	3.90×10^{-4}	8.70×10^{-4}
	0.1	26.26	0.53	0.15	7.09×10^{-3}	2.72×10^{-3}	7.82×10^{-3}
	0.2	26.55	0.36	9.86×10^{-2}	8.60×10^{-3}	6.00×10^{-3}	4.45×10^{-3}
	0.5	1.09	0.10	3.52×10^{-3}	1.16×10^{-2}	1.39×10^{-2}	7.26×10^{-3}
	1	0.72	0.04	8.32×10^{-4}	4.18×10^{-3}	4.92×10^{-3}	3.73×10^{-3}
	2	0.47	0.01	3.93×10^{-4}	4.46×10^{-3}	1.63×10^{-3}	2.33×10^{-3}
K	0.04	—	37.48	155.57	4.09×10^3	8.78×10^4	3.94×10^4
	0.1	—	49.46	172.08	3.70×10^3	9.66×10^3	3.36×10^3
	0.2	—	74.76	269.21	3.09×10^3	4.43×10^3	5.96×10^3
	0.5	—	11.19	309.88	94.17	78.28	150.32
	1	—	16.21	860.87	171.24	145.50	192.12
	2	—	54.54	1.19×10^3	105.04	287.69	201.26


190
 191 **Table S6.** H₂SO₄ and HNO₃ concentration effect on the distribution coefficient (K_d) and
 192 selectivity coefficient (K) of tested metals.

Acid conc. (M)		Metal					
		Pd	Pt	Rh	Ce	Zn	Fe
H_2SO_4							
K_d (L.g ⁻¹)	0	20.59	0.52	0.14	8.59×10^{-3}	5.97×10^{-3}	4.44×10^{-3}
	0.2	3.72	0.12	9.74×10^{-4}	1.19×10^{-2}	3.72×10^{-3}	3.96×10^{-3}
	0.5	2.72	0.07	3.47×10^{-3}	1.67×10^{-2}	1.06×10^{-2}	1.79×10^{-2}
	1	1.81	0.06	6.16×10^{-3}	1.11×10^{-2}	1.63×10^{-3}	2.44×10^{-3}
$K_{dPd/met}$	0	—	39.72	148.93	2.40×10^3	3.45×10^3	4.64×10^3

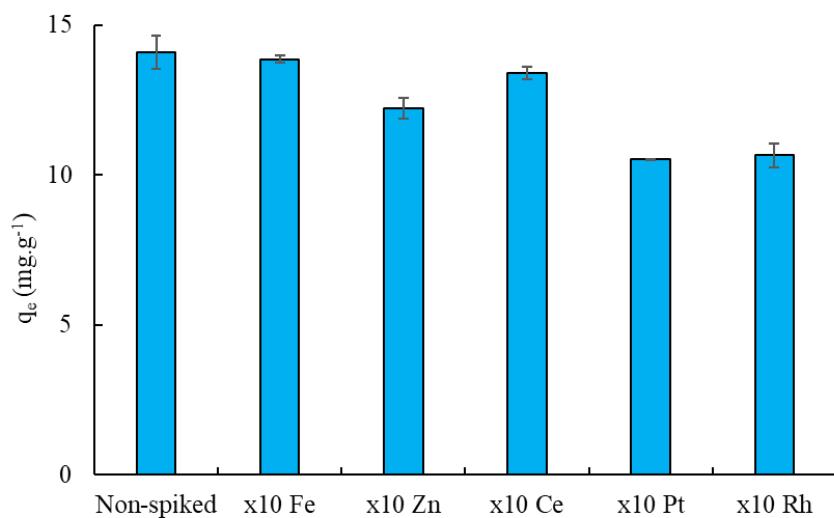
0.2	—	32.00	3.82×10^3	312.55	1.00×10^3	940.95
0.5	—	36.64	783.28	162.96	256.10	151.72
1	—	29.31	294.46	163.38	1.11×10^3	742.55
HNO₃						
K_d	0	20.59	0.52	0.14	8.59×10^{-3}	5.97×10^{-3}
(L.g⁻¹)	0.2	1.97	0.12	1.14×10^{-3}	2.04×10^{-2}	1.80×10^{-2}
	0.5	1.46	7.33×10^{-2}	6.97×10^{-3}	4.08×10^{-2}	2.94×10^{-2}
	1	1.15	5.48×10^{-2}	4.92×10^{-3}	1.96×10^{-2}	7.56×10^{-3}
K	0	—	39.72	148.93	2.40×10^3	3.45×10^3
	0.2	—	16.40	1.73×10^3	96.64	109.33
	0.5	—	19.95	209.89	35.81	49.79
	1	—	20.90	232.95	58.58	114.05
						151.57

193

194 To verify whether the reduced Pd adsorption capacity observed in 2 M HCl is caused by structural
 195 damage or alteration of functional groups in CFs at high acid concentrations, a control test was
 196 conducted. CFs (1 g.L⁻¹) were immersed in 2 M HCl and agitated for 6 h. The treated CFs were
 197 then separated, thoroughly washed with deionized water, and dried in an oven at 50 °C overnight.
 198 Subsequently, these pre-treated CFs were used for adsorption from a synthetic multimetallic
 199 solution containing (15 ± 1) mg.L⁻¹ of Pd, Pt, Rh, Fe, Zn, and Ce in 0.2 M HCl. The results showed
 200 no significant difference compared to untreated CFs, indicating that the decline in adsorption
 201 capacity at higher HCl concentrations is not attributable to structural degradation or modification
 202 of CF functional groups (Figure S3).

203

204 **Figure S3.** Metal adsorption behavior of pristine and 2 M HCl-treated CF from a multimetallic
 205 solution in 0.2 M HCl.


206

207

208

209 **2.5. Effect of competitive metal ions**

210 The effect of competitive metal ion concentrations on Pd adsorption by CF was evaluated by
211 systematically increasing the concentrations of one of competitive metals (Fe, Zn, Ce, Pt or Rh)
212 tenfold ($(150 \pm 5) \text{ mg.L}^{-1}$) while maintaining the concentration of other metals at $(15 \pm 1) \text{ mg.L}^{-1}$
213 (Figure S4). Results demonstrated that in all tests, Pd consistently achieved the highest
214 adsorption levels compared to other metals. However, by comparing the adsorption uptake in
215 these tests with the control, a measurable decline in Pd adsorption capacity was observed in tests
216 with tenfold Pt and Rh concentrations, accompanied by an increase in their adsorption capacities
217 (Figure S4). This behavior is attributed to the negatively charged chloride complexes of Pt and
218 Rh, which compete with Pd for adsorption sites on CF. At elevated Pt or Rh concentrations, mass
219 action effects become more pronounced, facilitating their adsorption despite their potentially
220 lower intrinsic affinity, ultimately leading to higher adsorption rates than in the unspiked samples.
221 This antagonistic interaction highlights the competitive nature of adsorption and the site-blocking
222 effects that influence metal distribution on adsorbent surfaces.

223

224 **Figure S4.** Adsorption variation of Pd following a 10-fold increase in competitive metal
225 concentration. CF dosage of 1 g.L^{-1} , initial concentrations of each metal at $(15 \pm 1) \text{ mg.L}^{-1}$,
226 concentration of spiked metal at $150 \pm 5 \text{ mg.L}^{-1}$, HCl concentration of 0.2 M, temperature at 303
227 K, and a contact time of 360 min.

228

229 Moreover, as shown in Figure S4, a tenfold increase in Zn concentration resulted in a slight but
230 noticeable decrease in Pd and Pt adsorption capacities, along with the sorption of a small amount
231 of Zn (1.8 mg.L^{-1}) from the solution. This suggests that at elevated Zn concentrations, despite not
232 forming strongly adsorbing anionic complexes like Pd and Pt at the studied HCl concentration,
233 Zn may still weakly interact with the CF surface, possibly through subtle complexation (Mishra,
234 2014). These secondary interactions effectively reduce the availability of active sites for Pd and

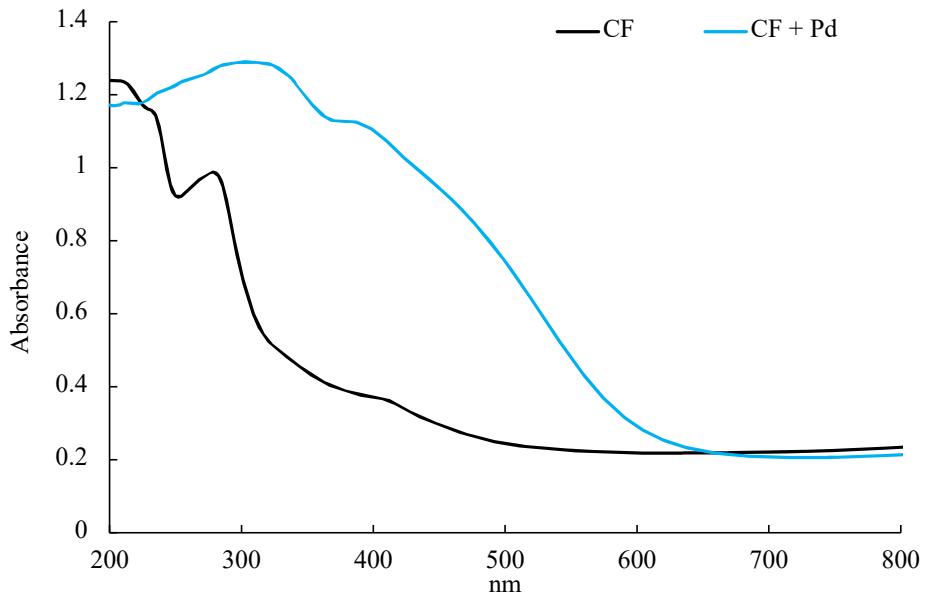
Pt, thereby hindering their uptake. In contrast, similar increases in Fe and Ce concentrations had minimal impact on Pd and Pt adsorption capacities, highlighting that the unique speciation and behavior of Zn under the given conditions play a distinct role in influencing the adsorption process.

2.6. Adsorption mechanism

To assess the practicability and nature of the adsorption process, thermodynamic parameters, including enthalpy change, ΔH ($J \cdot mol^{-1}$), entropy change, ΔS ($J \cdot mol^{-1}$), and Gibbs free energy change, ΔG ($J \cdot mol^{-1}$), were analyzed. These parameters were derived using the Van't Hoff equation (Eq. S5):

$$245 \quad \ln K = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} \quad \text{Eq. (S5)}$$

Here K is the dimensionless thermodynamic equilibrium constant, T is the absolute temperature (K), and R is the universal gas constant ($8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$). The adsorption equilibrium constant was initially estimated using the distribution coefficient, K_d ($\text{L} \cdot \text{g}^{-1}$), defined as:

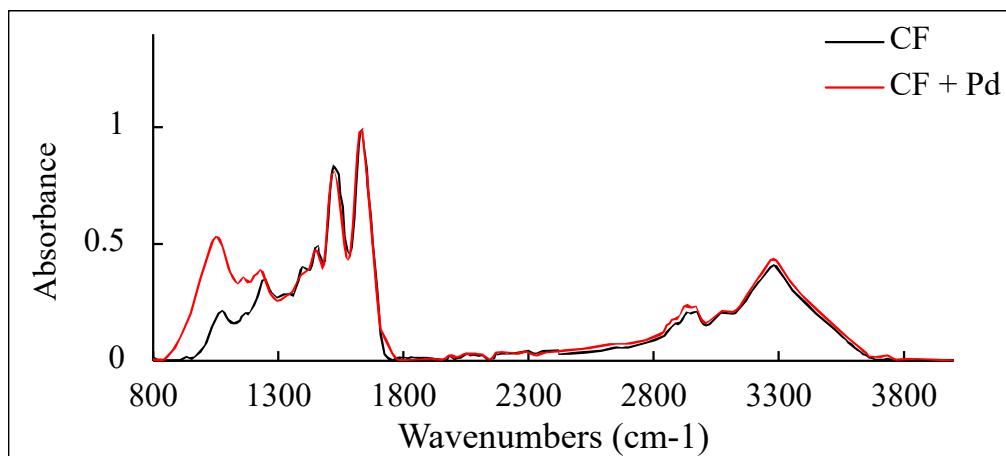

$$249 \quad K_d = \frac{q_e}{C_e} \quad \text{Eq. (S6)}$$

where q_e is the equilibrium adsorption capacity ($\text{mg} \cdot \text{g}^{-1}$) and C_e is equilibrium concentration of the solute in the solution ($\text{mg} \cdot \text{L}^{-1}$). However, the direct use of K_d as a thermodynamic equilibrium constant is problematic due to its dimensional nature and lack of physical significance, as highlighted by Tran (2022). To address this, a dimensionless equilibrium constant (K) was derived by incorporating the standard adsorbent concentration ($1 \text{ g} \cdot \text{L}^{-1}$):

$$255 \quad K = K_d \times \text{adsorbent dose} \quad (\text{g} \cdot \text{L}^{-1}) \quad \text{Eq. (S7)}$$

257 And ΔG was determined from the Equation S8:

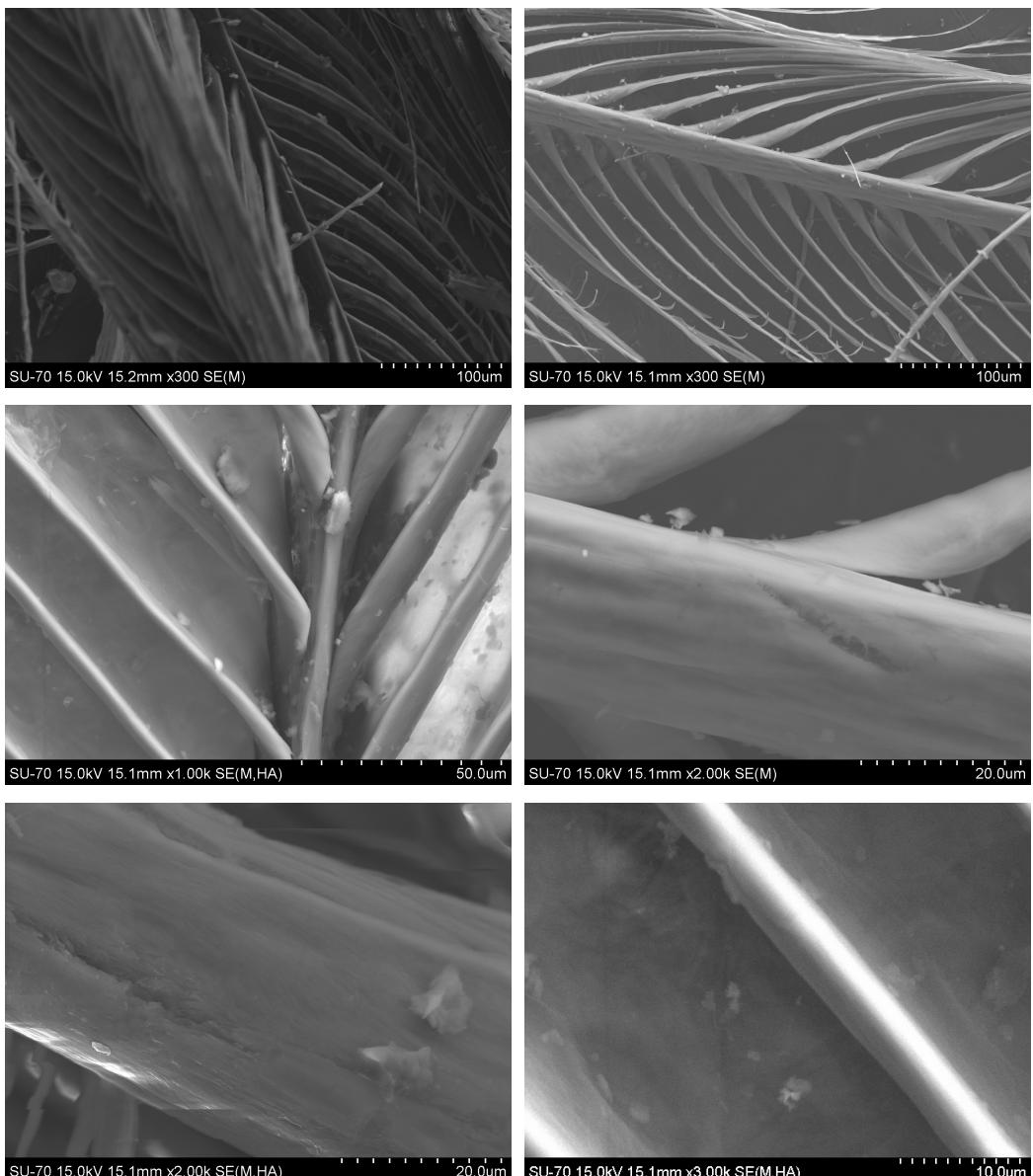
$$258 \quad \Delta G = -RT \ln K \quad \text{Eq. (S8)}$$



260

261 **Figure S5.** Solid-phase UV-visible spectroscopy of CFs before and after Pd adsorption.

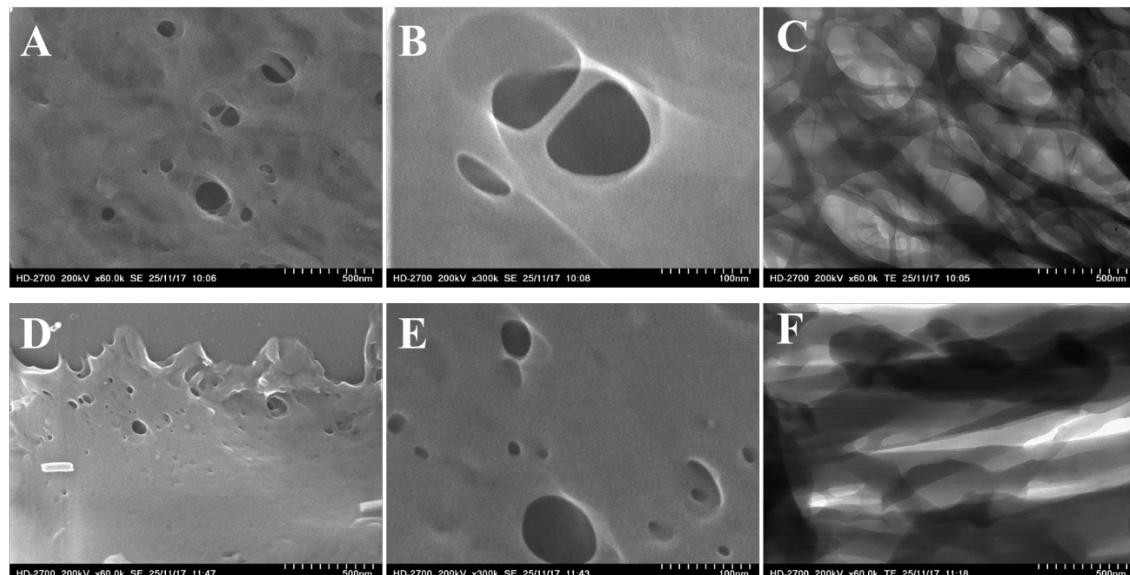
262


263

264

265 **Figure S6.** FTIR spectra of CFs before and after Pd adsorption from a 100 mg/L Pd solution in
266 0.2 M HCl by 1 g.L⁻¹ CFs. CF dosage of 1 g.L⁻¹, temperature at 303 K and a contact time of 360
267 min.

268



273 **Table S7.** Normalized elemental abundances of CFs before and after Pd adsorption from 100
 274 mg.L⁻¹ synthetic solution in 0.2 M HCl, determined by SEM-EDX from the highlighted area in
 275 Figure 4-B.

Element	Raw CFs		After Pd adsorption	
	[norm. wt.%]	[norm. at.%]	[norm. wt.%]	[norm. at.%]
Cl	0.09	0.04	3.34	1.32
S	4.00	1.68	4.17	1.82
C	55.36	62.03	55.58	64.92
O	22.44	18.88	20.07	17.60
N	18.07	17.36	13.92	13.94
Pd	0.04	0.01	2.92	0.39
Sum	100	100	100	100

276

277

278

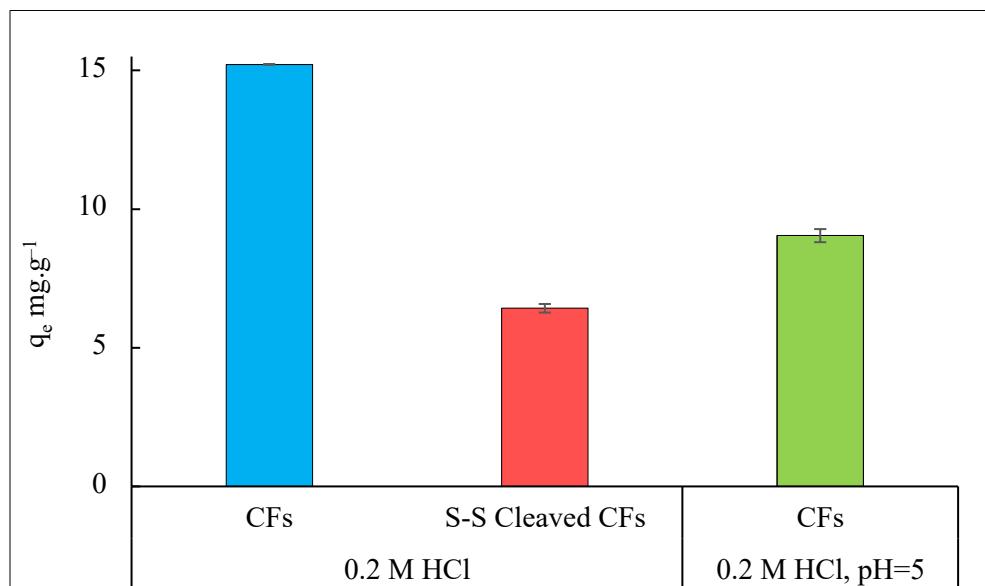
279 **Figure S8.** (A, B) STEM surface and (C) transmission images of untreated CF, and (D, E) surface
 280 and (F) transmission images of CF after Pd adsorption from the multimetallic solution with 2 M
 281 HCl.

282

283

284 **Table S8.** Surface elemental composition (At. %) of the CFs before and after Pd adsorption and
 285 also after Pd desorption by 0.2 M TU + 0.5 M HCl, as determined by XPS analysis.

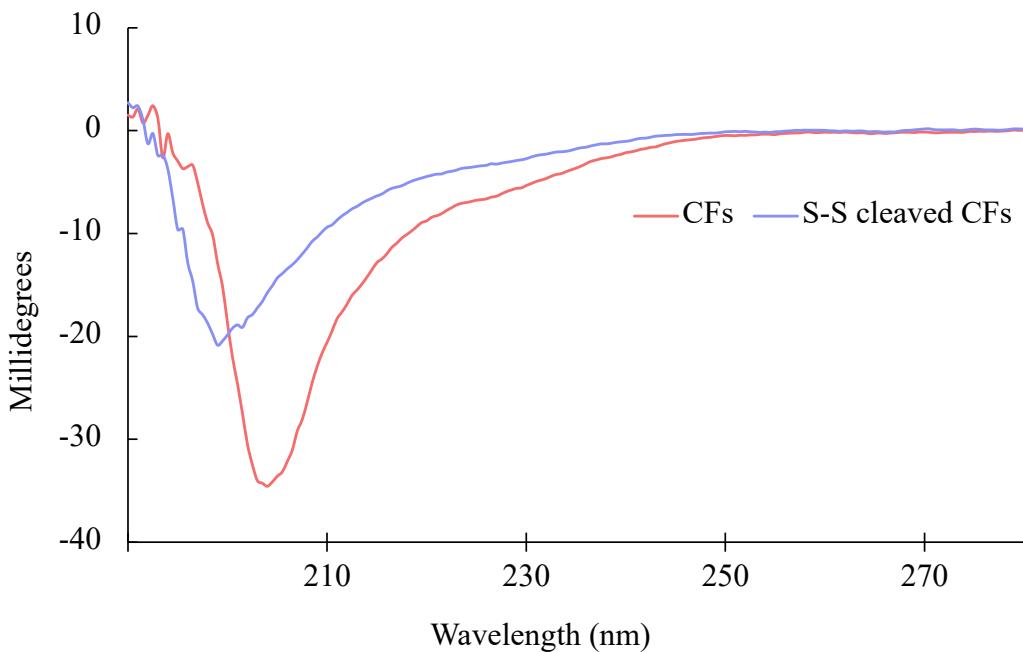
Sample	XPS Surface Elemental Quantitation (At. %)					
	C	O	N	S	Pd	Cl
CF	77.3	12.82	8.79	1.1	—	—
CF + Pd	78.1	11.78	6.13	0.98	0.52	2.48
CF after Pd desorp.	73.56	13.0	9.0	1.23	—	0.31


286

287 **Table S9.** Binding energy and relative abundance % of CFs before and after Pd adsorption, and
 288 also after Pd desorption by 0.2 M TU + 0.5 M HCl.

	CFs		CFs + Pd		CFs after Pd desorp.		Correlated groups
	BE (eV)	RA (%)	BE (eV)	RA (%)	BE (eV)	RA (%)	
C 1s	284.8	53.10	284.8	46.26	284.8	44.71	C–C, C–H _x
	286.3	19.47	286.3	22.53	—	—	C–N, C–O–C, C–O–H, C–Cl
	—	—	—	—	287.6	41.14	C=O–N
	288.1	18.72	288.1	19.17	—	—	C=O, N–C=O
	289.9	5.48	290.3	12.03	—	—	O=C–O
	291.6	3.23	—	—	291.4	14.15	
O 1s	—	—	529.8	27.84	—	—	Metal–O
	531.5	59.28	531.4	46.55	531.7	51.56	C=O
	533.0	34.17	533.8	15.22	533.8	24.14	O–C–O, C–OH
	535.4	6.55	535.9	10.39	535.9	15.55	
	—	—	—	—	538.9	8.76	
N 1s	399.2	6.96	399.3	13.51	398.8	5.95	C–N–C
	400.4	37.25	400.5	52.93	400.0	78.96	–NH ₂
	401.9	37.58	401.7	25.51	401.3	15.09	Protonated amine or amide
	403.4	18.20	403.1	8.05	—	—	N–O
S 2p	163.7	83.92	163.8	75.08	163.9	45.22	S–S

164.8	0.00	165.1	0	165.2	0		
167.6	16.08	167.6	24.92	167.3	27.8	Oxidized S	
168.9	0.00	168.9	0.00	168.4	0		
—	—	—	—	170.6	26.98		
—	—	—	—	171.9	0		
Pd 3d	—	—	338.05	100	—	—	Pd ²⁺
			343.1	0			
Cl 2p	—	—	198.57	78.77	—	—	


289

290

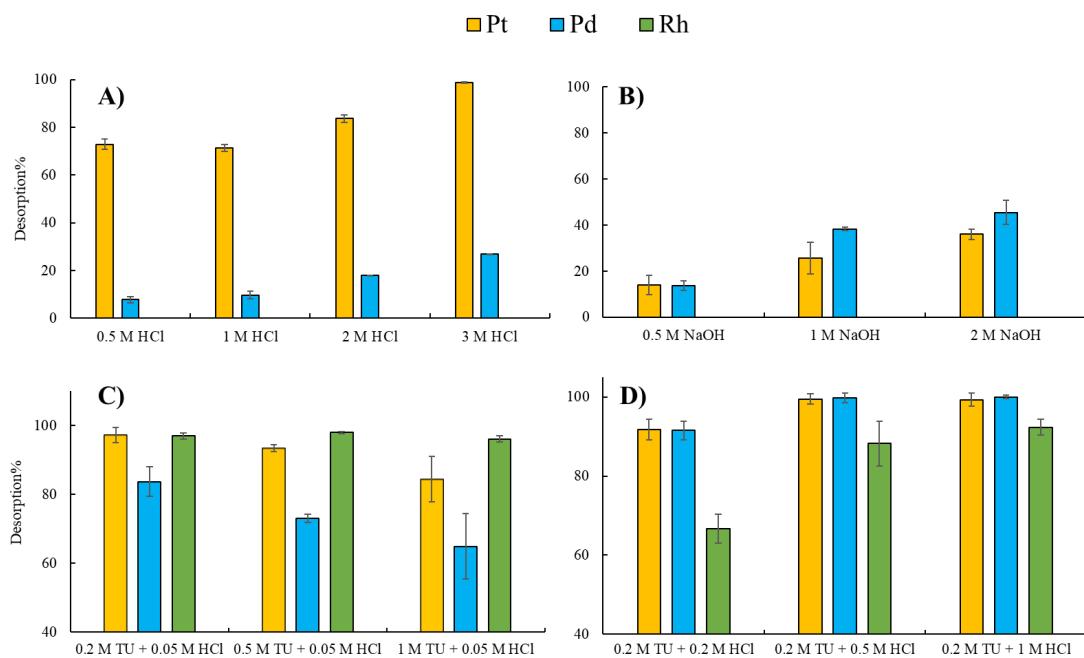
291 **Figure S9.** Percentage recovery of Pd from a solution containing $(15 \pm 1) \text{ mg}\cdot\text{L}^{-1}$ Pd in 0.2 M
292 HCl using untreated CFs, disulfide-cleaved CFs, and from a solution adjusted to pH 5 using
293 untreated CFs.

294

295

296 **Figure S10.** Circular dichroism (CD) spectra of CFs before and after disulfide bond cleavage.

297


298 **2.7. Desorption**

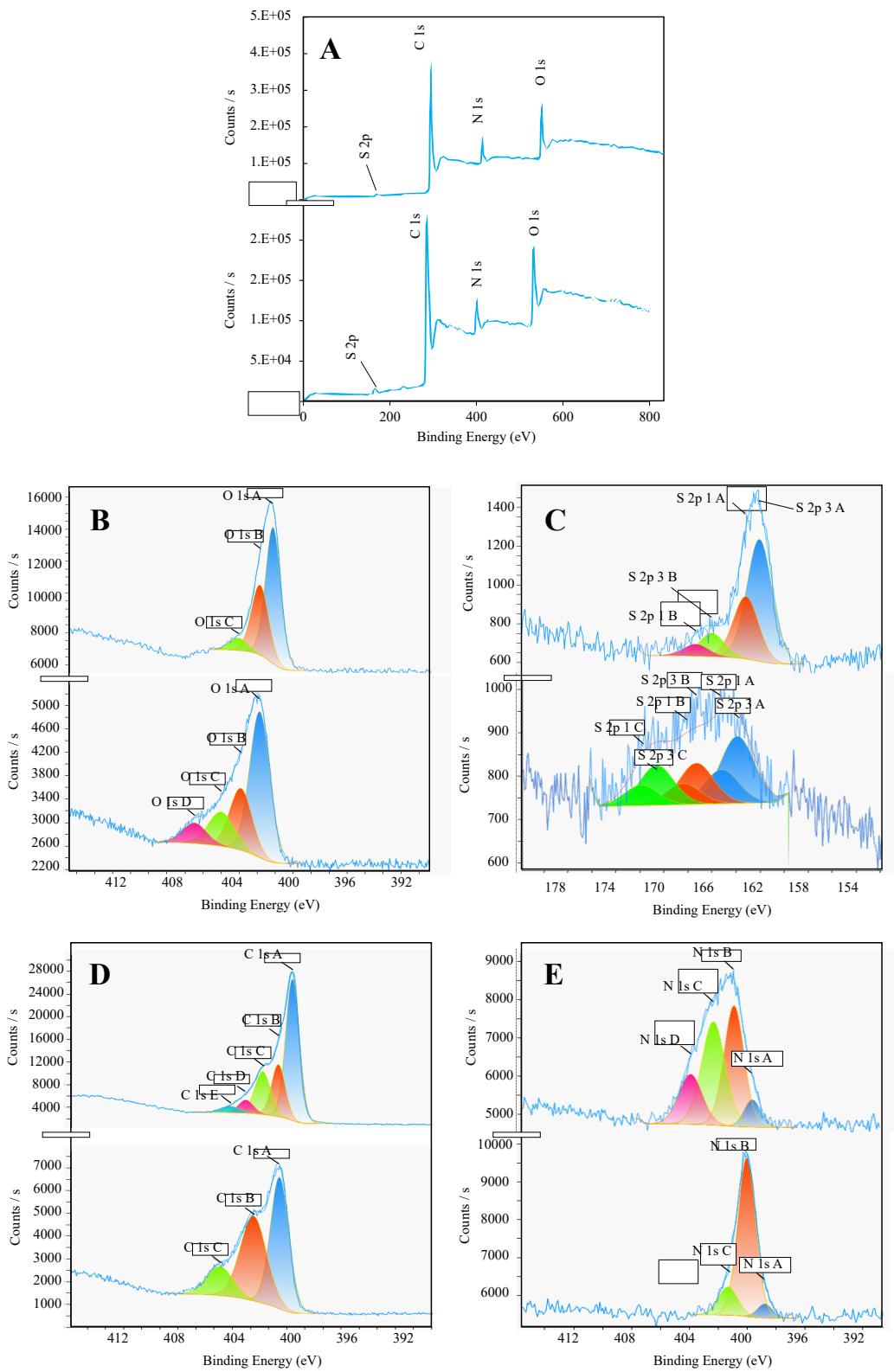
299 Feathers with adsorbed metals, obtained at optimized conditions from tests with synthetic
 300 solutions were initially digested in aqua regia, revealing metal loadings of (14.82 ± 0.32) , $(4.70 \pm$
 301 $0.25)$ and (2.07 ± 0.08) mg.g $^{-1}$ of Pd, Pt and Rh, respectively. Subsequent desorption experiments
 302 were conducted using various molarities of HCl, NaOH, and thiourea (TU) (Figure S11). Results
 303 from desorption with HCl indicated a degree of selectivity toward Pt desorption over Pd (Figure
 304 S11–A). At lower HCl concentrations (0.5 and 1.0 M), approximately 70 % (~ 3.3 mg.g $^{-1}$) of the
 305 adsorbed Pt was desorbed, while Pd removal remained low at only 5–8 % (~ 0.74 – 1.18 mg.g $^{-1}$).
 306 Increasing the HCl concentration to 2.0 and 3.0 M enhanced Pt desorption to 84% and 99%,
 307 though Pd desorption also rose to about 18% and 26%. By contrast, NaOH solutions, tested at
 308 0.5, 1.0, and 2.0 M (Figure S11–B), consistently demonstrated low desorption efficiencies for
 309 both Pd and Pt. Notably, Rh remained bound under both HCl and NaOH conditions, with no
 310 detectable desorption observed.

311 Parallel experiments were conducted using solutions with various concentrations of TU in
 312 acidified media containing 0.05 M HCl. Acidification is essential as it enhances TU–metal
 313 complex formation through TU protonation (Ammi Said et al., 2013). These studies revealed
 314 higher desorption efficiencies for all three metals with low TU concentrations (0.2 M) (Figure
 315 S11–C). It is known that low TU levels promote the formation of soluble Pd–TU complexes,

316 enhancing detachment from CF, while excessive TU can disrupt the equilibrium or increase
317 viscosity, hindering metal release (Chatterjee and Abraham, 2019).

318 Further studies were performed to improve the desorption yield. For this purpose, 0.2 M TU was
319 selected as fixed TU concentration in combination with varying HCl molarities (0.2, 0.5 and 1.0
320 M HCl) (Figure S11-D). Among these, the combination of 0.2 M TU and 0.5 M HCl
321 demonstrated the highest efficiency, desorbing nearly 100 % of both Pd and Pt, along with
322 approximately 90 % of Rh. The stripped Pd in the eluate can subsequently be recovered either by
323 cementation with Zn powder, chemical reduction (Goc et al., 2024b), or precipitation with alkali
324 metal borohydrides (Awadalla et al., 1990).

325


326 **Figure S11.** Desorption studies of Pd, Pt and Rh from PGM loaded CF, obtained from optimized
327 adsorption studies by different concentrations of (A) HCl, (B) NaOH, (C) 0.2 TU + 0.05 M HCl
328 and (D) 0.2 M TU + 0.5 HCl. (Total metal content of feathers before desorption: 4.69 mg.g⁻¹ of
329 Pt, 14.82 mg.g⁻¹ Pd, and 2.07 mg.g⁻¹ Rh).

330

331 **2.8. Desorption mechanistic studies**

332 Based on the XPS analysis of pristine CF and after Pd adsorption–desorption (desorption by 0.2
333 M TU + 0.5 M HCl), notable structural and compositional changes are evident (Figure S12, Table
334 S9 and Table S10). In the pristine CF, the surface exhibits typical signals corresponding to C, O,
335 N, and S, reflecting the native protein structure of keratin. However, after Pd desorption, the
336 elemental profile changes significantly. The S signal, which is critical for Pd binding via thiol and
337 disulfide groups, is considerably diminished, indicating potential chemical alteration or oxidation

338 of these functional groups during the desorption process (Figure S12–C). Additionally, the
339 possible loss or transformation of nitrogen-containing groups suggests that the chemical integrity
340 of keratin is compromised. These alterations likely reduce the material's capacity for effective
341 re-adsorption of Pd^{2+} . Despite no significant changes in the elemental composition of the CF
342 before and after extraction (Table S10), the XPS data imply that CF after undergoing Pd
343 desorption may not be suitable for reuse.

344

345 **Figure S12.** (A) Wide-scan XPS survey spectra; high-resolution XPS spectra of (B) O 1s, (C)
 346 S 2p, (D) C 1s and (E) N 1s regions. Each panel shows spectra of pristine CFs (top) and after Pd
 347 adsorption-desorption (bottom).

348

349 **Table S10.** CHNS elemental analysis of CFs before and after Pd adsorption, and following Pd
 350 desorption with 0.2 M TU + 0.5 M HCl.

Sample	Average			
	%C	%H	%N	%S
CF	46.67 ± 0.41	6.78 ± 0.53	15.62 ± 1.61	2.58 ± 0.11
CF after Pd adsorption	46.93 ± 0.20	5.83 ± 0.52	14.94 ± 0.61	2.40 ± 0.11
CF after Pd desorption by TU–HCl	45.88 ± 0.88	6.18 ± 0.19	14.67 ± 0.37	2.34 ± 0.16

351

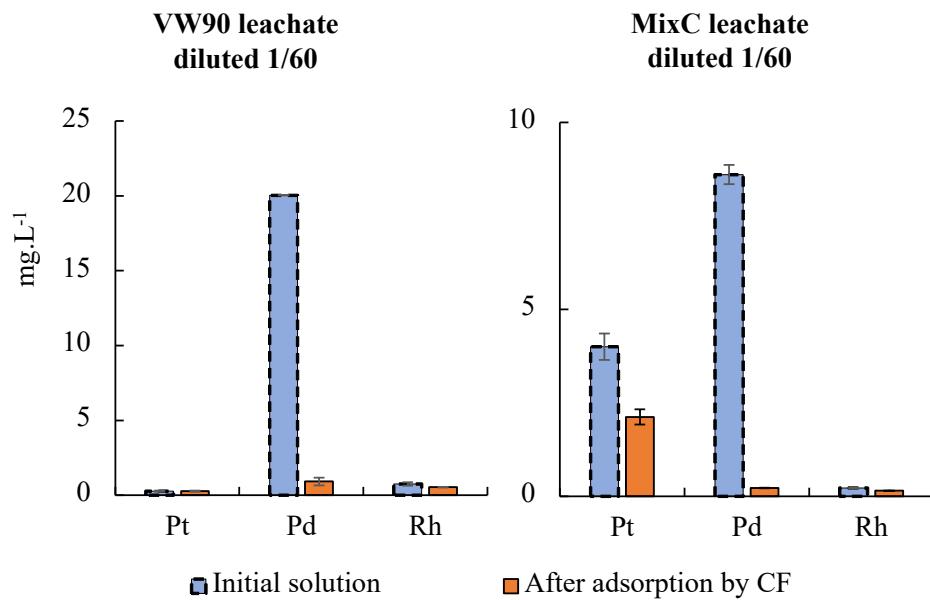
352 **2.9. Leachate characterization**

353

354 **Table S11.** Metal concentrations in the original (non-diluted), 1/6 and 1/60 (v/v) diluted leachates
 355 of VW90 and MixC (Leaching condition: 11.6 M HCl with 1% H₂O₂ at 70 °C for 3 h).

Metal (mg.L ⁻¹)	VW90			MixC		
	Original	Diluted 1/6	Diluted 1/60	Original	Diluted 1/6	Diluted 1/60
Fe	115.6 ± 8.4	25.56 ± 1.33	2.4 ± 0.0	263.5 ± 14.3	42.0 ± 3.9	5.6 ± 0.0
Zn	74.6 ± 4.7	11.44 ± 0.74	1.5 ± 0.0	81.0 ± 2.4	12.2 ± 0.2	1.6 ± 0.0
Ce	3422.6 ± 36.1	630.83 ± 2.55	67.0 ± 0.8	2672.2 ± 28.7	445.7 ± 4.6	53.9 ± 2.0
Pt	14.6 ± 1.9	2.54 ± 0.31	0.5 ± 0.1	310.6 ± 5.9	39.2 ± 0.9	4.0 ± 0.0
Pd	1180.9 ± 20.5	167.14 ± 3.25	20.0 ± 0.9	538.9 ± 13.7	85.1 ± 2.2	8.5 ± 0.2
Rh	59.8 ± 0.3	2.89 ± 0.05	0.5 ± 0.0	28.8 ± 2.1	4.8 ± 0.3	0.4 ± 0.0
Ti	350.0 ± 2.9	49.30 ± 0.47	0.7 ± 0.0	70.1 ± 0.8	5.1 ± 0.1	0.4 ± 0.0
Ni	18.5 ± 0.6	4.5 ± 0.1	0.5 ± 0.0	14.5 ± 0.4	3.2 ± 0.1	<LOD
Cu	36.5 ± 0.4	6.3 ± 0.1	0.98 ± 0.01	18.5 ± 0.2	3.6 ± 0.0	<LOD

356


357

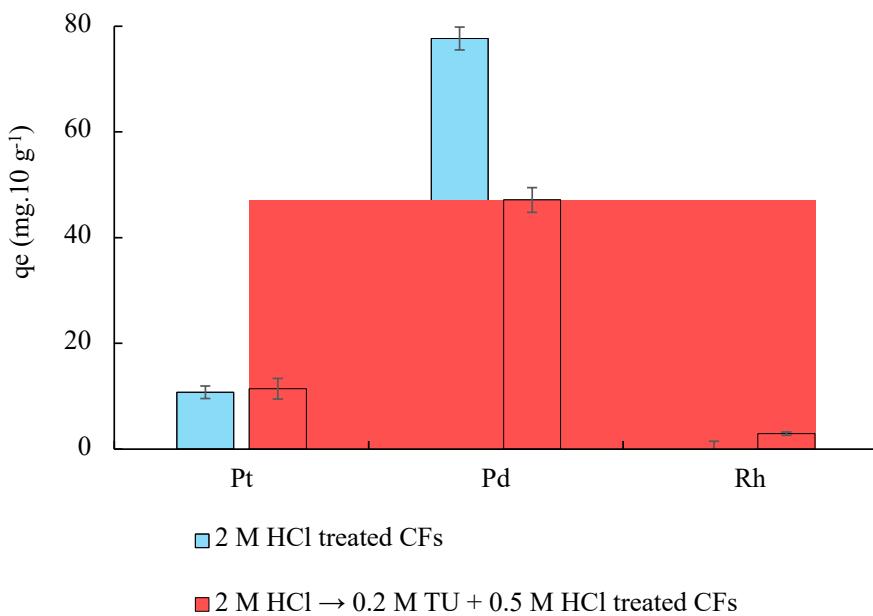
358 **2.10. Application to real leachates – optimization**

359 Adsorption tests on real leachates were initially performed using leachates diluted to 1/60, with
360 HCl concentration of ~0.2 M. Based on the maximum adsorption capacity of CFs measured at 0.2
361 M HCl ((19.61 ± 1.31) mg.g⁻¹; Table S2) and the Pd concentrations in VW90 and MixC leachates
362 (20.04 and 8.50 mg.L⁻¹, respectively), it was determined that 1 g.L⁻¹ of CFs was theoretically
363 sufficient to achieve complete Pd recovery from both solutions. Indeed, more than 95% of Pd was
364 adsorbed from both leachates (Figure S13). Since the VW90 leachate has a negligible Pt
365 concentration, no changes were observed after adsorption; whereas in the MixC leachate,
366 approximately 50 % of Pt (~2 mg.L⁻¹) was recovered (Figure S13). Rh concentrations in both
367 leachates were initially very low and remained largely unchanged.

368 On the other hand, in order to recover Pd from the 1/6 diluted leachates with HCl concentration
369 of ~2 M, an “adjusted” maximum adsorption capacity ($q_{max, adjusted}$) of CFs was estimated from the
370 maximum adsorption capacity and the decrease in Pd adsorption efficiency at 2 M HCl (33%;
371 Figure 2–A). This calculation yielded a $q_{max, adjusted}$ of 6.47 mg.g⁻¹ of CFs in 2 M HCl solutions.
372 Considering Pd concentration in 1/6 diluted VW90 (~167 mg.L⁻¹) and MixC (~85 mg.L⁻¹)
373 leachates, a cumulative CF dosage of 25 g.L⁻¹ and 15 g.L⁻¹, respectively, were estimated to be
374 sufficient for complete Pd recovery. Based on these estimates, five and three successive
375 adsorption cycles, each with 5 g.L⁻¹ of fresh CFs, were conducted for VW90 and MixC leachates,
376 respectively. In the VW90 leachate, Pd uptake by CFs progressively declined across five
377 adsorption cycles, with adsorption capacities of 13.2, 8.0, 7.0, 3.2, and 1.2 mg.g⁻¹ CF, respectively
378 (Table S12), equivalent to a total Pd adsorption of about 66, 40, 35, 16, and 6 mg.L⁻¹ by 5 g of
379 CFs in each cycle. The maximum Pd adsorption capacity observed in the first cycle was nearly
380 double the estimated $q_{max, adjusted}$ for this test, attributed to the combined effects of increased Pd
381 concentration and the leachate’s ionic strength. After five adsorption cycles, Pd was reduced
382 below the detection limit. As illustrated in **Error! Reference source not found.** and Table S12,
383 four adsorption cycles were sufficient to recover ~96% of Pd with very little contamination,
384 especially during the first three cycles, reaching purities of approximately 99%. Only negligible
385 amounts of Pt and Rh (total amount of 0.16 and 0.24 mg.g⁻¹, respectively) were adsorbed by CFs
386 after four successive cycles (Table S12). No significant changes were observed in the
387 concentrations of other metals throughout the study, this includes metals tested in optimization
388 steps (Fe, Zn and Ce) and also other metals present in the leachate including Ti, Ni and Cu.
389 Importantly, a similar result was obtained for the 1/6 diluted MixC leachate, confirming the
390 robustness of the separation (Table S12).

391

392

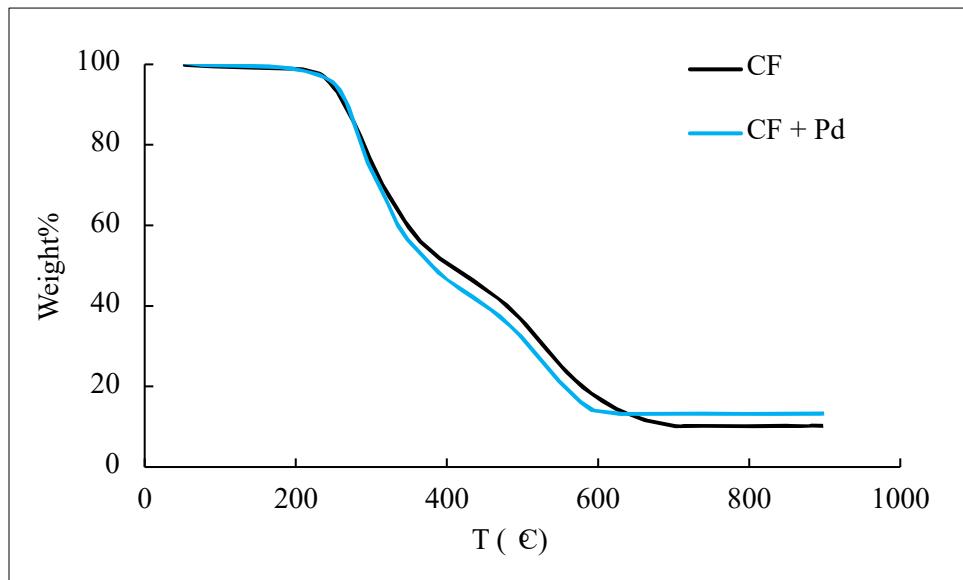

393 **Figure S13.** PGMs adsorption by 1 g/L of a) VW90 and b) MixC 1/60 (v/v) leachates. CF dosage
394 of 1 g.L⁻¹, temperature at 30 °C and a contact time of 360 min.

395

396 **Table S12.** Adsorption capacity of tested PGMs per gram of CFs from 1/6 diluted VW90 and
397 MixC leachates per adsorption cycles. CF dosage of 5 g.L⁻¹ in each cycle, temperature at 303 K
398 and a contact time of 360 min.

Ads. cycle	C _e (mg.L ⁻¹)			q _e (mg.g ⁻¹)		
	Pt	Pd	Rh	Pt	Pd	Rh
	1/6 diluted VW90 leachate					
Before ads.	2.53 ± 0.07	163.52 ± 4.11	2.89 ± 0.03	—	—	—
1st cycle	2.50 ± 0.11	97.16 ± 1.96	2.89 ± 0.03	0.00 ± 0.01	13.27 ± 0.39	0.00 ± 0.00
2nd cycle	2.33 ± 0.11	57.20 ± 0.48	2.81 ± 0.03	0.03 ± 0.01	7.99 ± 0.10	0.02 ± 0.01
3rd cycle	1.85 ± 0.08	22.28 ± 2.96	2.71 ± 0.03	0.10 ± 0.02	6.98 ± 0.59	0.02 ± 0.01
4th cycle	1.73 ± 0.02	6.04 ± 1.26	1.75 ± 0.09	0.02 ± 0.02	3.25 ± 0.25	0.19 ± 0.02
5th cycle	0.61 ± 0.11	<LOD	1.45 ± 0.12	0.22 ± 0.02	1.21 ± 0.00	0.06 ± 0.01
1/6 diluted MixC leachate						
Initial	39.14 ± 0.08	85.10 ± 1.27	4.86 ± 0.03	—	—	—
1st cycle	36.18 ± 0.28	37.03 ± 0.21	4.86 ± 0.03	0.59 ± 0.02	9.61 ± 0.04	0.00 ± 0.01
2nd cycle	33.86 ± 0.25	2.26 ± 0.07	3.19 ± 0.02	0.46 ± 0.05	6.95 ± 0.01	0.33 ± 0.00
3rd cycle	21.83 ± 0.78	<LOD	3.10 ± 0.00	2.41 ± 0.16	0.45 ± 0.00	0.07 ± 0.00

399


401 **Figure S14.** PGMs adsorption capacity of CFs exposed to 2 M HCl and also to 2 M HCl followed
402 by 0.2 M TU + 0.5 M HCl from 1/6 MixC leachate. CF dosage of 10 g.L⁻¹, temperature at 303 K
403 and a contact time of 360 min.

404

405 **2.11. Thermogravimetric analysis**

406 The thermal decomposition behavior of CF before and after Pd adsorption was investigated using
407 thermogravimetric analysis (TGA) to evaluate the thermal stability of the materials. Figure S15
408 presents the TGA curves of raw CF and CF containing Pd. A minor weight loss below 150 °C
409 was attributed to the evaporation of free and bound water (Sharma et al., 2017). Both samples
410 remained thermally stable up to 200 °C. Beyond this point, a significant weight loss was observed
411 between 240 and 400 °C (Figure S15), corresponding to the degradation of protein molecules.
412 This includes helix denaturation, skeletal degradation, and the destruction of peptide bridge chain
413 linkages (Sharma et al., 2017). According to the literature, this process involves the breakdown
414 of disulfide bonds, resulting in the release of sulfur dioxide and hydrogen sulfide (Idris et al.,
415 2014; Sharma et al., 2017; Wang et al., 2016). After pyrolysis, the residual weights were 90% for
416 raw CF and 87% for CF with adsorbed Pd. The slightly higher residual mass for Pd-adsorbed CFs
417 suggests that Pd might have enhanced the carbonization process, likely through a catalytic effect
418 (Shetty and Hegde, 2024).

419

Figure S15. Thermogravimetric analysis (TGA) curves of raw CFs and Pd-adsorbed feathers (CF + Pd), showing weight loss (%) as a function of temperature (°C). (CFs obtained from adsorption studies in optimized conditions, and contain 14.82 ± 0.32 , 4.70 ± 0.25 and $2.07 \pm 0.08 \text{ mg.g}^{-1}$ of Pd, Pt and Rh).

3. References

Abd-Elhamid, A.I., Abu Elgoud, E.M., Aly, H.F., 2023. Adsorption of palladium from chloride aqueous solution using silica alginate nanomaterial. *Int. J. Biol. Macromol.* 253, 126754. <https://doi.org/10.1016/j.ijbiomac.2023.126754>

Akioka, S., Hirai, S., Ise, T., Gando, N., Alharbi, M.A.H., 2021. Selective recovery of palladium by wool resin and woven wool fabric resinbents. *Hydrometallurgy* 203, 105629. <https://doi.org/10.1016/j.hydromet.2021.105629>

Ammi Said, A., Amara, M., Kerdjoudj, H., 2013. The effect of thiourea as a complexing agent on the separation of metallic ions through cation exchange membranes by Donnan dialysis. *Ionics* 19, 177–183. <https://doi.org/10.1007/s11581-012-0724-x>

Awadalla, F.T., Molnar, R.E., Ritcey, G.M., 1990. Recovery of platinum group metals (pgm) from acidic solutions by reduction precipitation with sodium borohydride. *CA2016492A1*.

Chatterjee, A., Abraham, J., 2019. Desorption of heavy metals from metal loaded sorbents and e-wastes: A review. *Biotechnol. Lett.* 41, 319–333. <https://doi.org/10.1007/s10529-019-02650-0>

Goc, K., Benke, G., Kluczka, J., Pianowska, K., Malarz, J., Leszczyńska-Sejda, K., 2024a. Application of ion-exchange dynamic conditions in the recovery of precious metals from refining waste. *Sci. Rep.* 14, 15026. <https://doi.org/10.1038/s41598-024-66086-x>

Goc, K., Kluczka, J., Benke, G., Malarz, J., Pianowska, K., Leszczyńska-Sejda, K., 2024b. Precipitation of Precious Metals Concentrates from Post-Elution Solutions from Ion-Exchange Processes. *Minerals* 14, 625. <https://doi.org/10.3390/min14060625>

448 Godlewska-Żyłkiewicz, B., Sawicka, S., Karpińska, J., 2019. Removal of Platinum and
449 Palladium from Wastewater by Means of Biosorption on Fungi *Aspergillus* sp. and Yeast
450 *Saccharomyces* sp. *Water* 11, 1522. <https://doi.org/10.3390/w11071522>

451 Hubicki, Zbigniew, Wołowicz, A., 2009. A comparative study of chelating and cationic ion
452 exchange resins for the removal of palladium(II) complexes from acidic chloride media.
453 *J. Hazard. Mater.* 164, 1414–1419. <https://doi.org/10.1016/j.hazmat.2008.09.053>

454 Hubicki, Z., Wołowicz, A., 2009. Adsorption of palladium(II) from chloride solutions on
455 Amberlyst A 29 and Amberlyst A 21 resins. *Hydrometallurgy* 96, 159–165.
456 <https://doi.org/10.1016/j.hydromet.2008.10.002>

457 Hubicki, Z., Wołowicz, A., Wawrzkiewicz, M., 2009. Application of commercially available
458 anion exchange resins for preconcentration of palladium(II) complexes from chloride–
459 nitrate solutions. *Chem. Eng. J.* 150, 96–103. <https://doi.org/10.1016/j.cej.2008.12.007>

460 Idris, A., Vijayaraghavan, R., Rana, U.A., Patti, A.F., MacFarlane, D.R., 2014. Dissolution and
461 regeneration of wool keratin in ionic liquids. *Green Chem.* 16, 2857–2864.
462 <https://doi.org/10.1039/C4GC00213J>

463 Mishra, V., 2014. Biosorption of zinc ion: a deep comprehension. *Appl. Water Sci.* 4, 311–332.
464 <https://doi.org/10.1007/s13201–013–0150–x>

465 Sari, A., Mendil, D., Tuzen, M., Soylak, M., 2009. Biosorption of palladium(II) from aqueous
466 solution by moss (*Racomitrium lanuginosum*) biomass: Equilibrium, kinetic and
467 thermodynamic studies. *J. Hazard. Mater.* 162, 874–879.
468 <https://doi.org/10.1016/j.hazmat.2008.05.112>

469 Sharma, S., Gupta, A., Chik, S.M.S.T., Kee, C.G., Mistry, B.M., Kim, D.H., Sharma, G., 2017.
470 Characterization of keratin microparticles from feather biomass with potent antioxidant
471 and anticancer activities. *Int. J. Biol. Macromol.* 104, 189–196.
472 <https://doi.org/10.1016/j.ijbiomac.2017.06.015>

473 Shetty, A., Hegde, G., 2024. Synthesis and characterization of biowaste–derived porous carbon
474 supported palladium: a systematic study as a heterogeneous catalyst for the reduction of
475 nitroarenes. *React. Kinet. Mech. Catal.* 137, 2989–3004. <https://doi.org/10.1007/s11144–024–02690–2>

477 Škerget, M., Čolnik, M., Zemljič, L.F., Gradišnik, L., Semren, T.Ž., Lovaković, B.T., Maver, U.,
478 2023. Efficient and Green Isolation of Keratin from Poultry Feathers by Subcritical
479 Water. *Polymers* 15, 2658. <https://doi.org/10.3390/polym15122658>

480 Tran, H.N., 2022. Improper Estimation of Thermodynamic Parameters in Adsorption Studies with
481 Distribution Coefficient K_D (q_e/C_e) or Freundlich Constant (K_F): Considerations from the
482 Derivation of Dimensionless Thermodynamic Equilibrium Constant and Suggestions.
483 *Adsorpt. Sci. Technol.* 2022. <https://doi.org/10.1155/2022/5553212>

484 Wang, K., Li, R., Ma, J.H., Jian, Y.K., Che, J.N., 2016. Extracting keratin from wool by using L
485 –cysteine. *Green Chem.* 18, 476–481. <https://doi.org/10.1039/C5GC01254F>

486 Wang, Z., Kang, S., Won, S., 2021. Recovery of Pd(II) from Aqueous Solution by
487 Polyethylenimine–Crosslinked Chitin Biosorbent. *Coatings* 11, 593.
488 <https://doi.org/10.3390/coatings11050593>

489 Wojnicki, M., Socha, R.P., Pędziuch, Z., Mech, K., Tokarski, T., Fitzner, K., 2018. Palladium(II)
490 Chloride Complex Ion Recovery from Aqueous Solutions Using Adsorption on Activated
491 Carbon. *J. Chem. Eng. Data* 63, 702–711. <https://doi.org/10.1021/acs.jced.7b00885>

492 Wołowicz, A., Hubicki, Z., 2012. Ion Exchange Recovery of Palladium(II) from Acidic Solutions
493 Using Monodisperse Lewatit SR–7. *Ind. Eng. Chem. Res.* 51, 16688–16696.
494 <https://doi.org/10.1021/ie302304c>

495 Won, S.W., Yun, Y.-S., 2013. Recovery of metallic palladium from hydrochloric acid solutions
496 by a combined method of adsorption and incineration. *Chem. Eng. J.* 218, 303–308.
497 <https://doi.org/10.1016/j.cej.2012.12.052>

498 Zhang, L., Li, B., Shao, P., Zhou, X., Li, D., Hu, Z., Dong, H., Yang, L., Shi, H., Luo, X., 2023.
499 Selective capture of palladium from acid wastewater by thiazole-modified activated
500 carbon: Performance and mechanism. *Environ. Res.* 238, 117253.
501 <https://doi.org/10.1016/j.envres.2023.117253>

502 Zhou, L., Liu, J., Liu, Z., 2009. Adsorption of platinum(IV) and palladium(II) from aqueous
503 solution by thiourea-modified chitosan microspheres. *J. Hazard. Mater.* 172, 439–446.
504 <https://doi.org/10.1016/j.jhazmat.2009.07.030>

505