

Removal of contaminants from wastewater using the bivalve *Corbicula fluminea* - comparative assessment of biofiltration and biosorption

Fátima Jesus^{1,2} *, Érica Pascoal², Érika M.L. Sousa^{1,3}, Diogo Mantas², Mariana Sousa², Bárbara M.C. Vaz^{3,4}, Fernando J.M. Gonçalves^{1,2}, João A.P. Coutinho^{3,4}, Sónia P.M. Ventura^{3,4}, Vânia Calisto^{1,3}, Joana Luísa Pereira^{1,2}

¹ CESAM – Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

² Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

³ Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

⁴ CICECO – Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

***Corresponding author**

CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal. Phone: +351 234 370 777. Email: fatima.jesus@ua.pt

Supplementary Data

Section S1. Milled shells characterization

Section S2. Chemical quantification

Table S1. Chemical structure and main physicochemical properties of the tested compounds.

Table S2: Summary of literature records on the main properties of milled bivalve shells.

Table S3. Removal rate (mean \pm standard deviation, expressed as $\mu\text{g.ind}^{-1}.\text{h}^{-1}$) of the tested compounds by *C. fluminea* after exposure to a solution containing the compounds at an initial concentration of 0.5 mg.L^{-1} and 1.0 mg.L^{-1} during the periods 0-6 h, 6-24 h, and 24-48 h.

Table S4. Summary of the statistical analysis regarding the effect of the initial concentration (0.5 and 1.0 mg.L^{-1}) and the exposure time (6 h, 24 h, and 48 h) on the removal percentage by *C. fluminea*.

Table S5. Pearson correlation between the physicochemical properties of the tested compounds (log Dow and molar mass) and the removal endpoints, regarding the biofiltration experiments. A) for the 9 tested compounds; b) excluding compounds with molecular mass above 300 g.mol^{-1} (diclofenac and fluoxetine).

Table S6. Summary of the statistical analysis regarding the effect of the initial concentration on the removal percentage of each compound by the milled *C. fluminea* shells.

Table S7. Summary of the statistical analysis regarding the effect of the initial concentration on the adsorption capacity of each compound by the milled *C. fluminea* shells.

Table S8. Pearson correlation between the physicochemical properties of the tested compounds and the removal endpoints, regarding the biosorption experiments.

Table S9. Summary of EC50 values (when available, 95% Confidence Interval, CI, or standard deviation (SD)/error (SE), are provided within parenthesis) collected from the literature for *Raphidocelis subcapitata* exposed to each tested compound.

Table S10. Summary of EC50 values (when available, 95% Confidence Interval, CI, or standard deviation, SD, are provided within parenthesis) collected from the literature for *Aliivibrio fischeri* exposed to each tested compound, all concerning bioluminescence inhibition, at different exposure periods (Time).

Figure S1. Decrease on the compound concentration, expressed as the difference between the contaminant concentration in the control (C_0) and the concentration in the treated sample (C_f), after treatment by *C. fluminea* (biofiltration) and by *C. fluminea* milled shells (biosorption), during 24 h, considering a solution with an initial concentration of 1.0 mg.L^{-1} .

Figure S2. Growth rate inhibition of *R. subcapitata* exposed to samples (0.5 and 1.0 mg.L^{-1}) before any treatment (0 h) and after 48 h of aeration (48 h – untreated; no clams) or biofiltration by *C. fluminea* (48 h – treated by clams).

Figure S3. Bioluminescence inhibition of *A. fischeri* exposed to samples (0.5 and 1.0 mg.L^{-1}) before any treatment (0 h) and after 48 h of aeration (48 h – untreated; no clams) or biofiltration by *C. fluminea* (48 h – treated by clams).

Figure S4. Growth rate inhibition of *R. subcapitata* exposed to samples (0.5 and 1.0 mg.L^{-1}) that were previously in contact with *C. fluminea* milled shells (milled shells) or untreated (control, no shells) during 24 h.

Figure S5. Bioluminescence inhibition of *A. fischeri* exposed to samples (0.5 and 1.0 mg.L^{-1}) that were previously in contact with *C. fluminea* milled shells (milled shells) or untreated (control, no shells) during 24 h.

Figure S6. Comparative inhibition of the controls and the blank samples from the biofiltration experiment for the growth inhibition endpoints of *R. subcapitata*.

Section S1. Milled shells characterization

Shells were characterized concerning the point of zero charge (PZC) and the specific surface area. The point of zero charge (PZC) corresponds to the pH at which the overall electrical charge on the surface of the material equals zero, and was determined following Sousa, Otero [1]. Briefly, 0.1 M NaCl solutions (20 mL) with initial pH values (pH_i) of 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 were used and added to 2 g of milled shells. The tubes were shaken in an overhead shaker (Heidolph, Reax 2; 80 rpm) for 24 h at room temperature. After this period, the tubes were centrifuged for 5 min at 4000 rpm, and the final pH values were measured (pH_f). The differences between the initial and final pH were calculated ($\Delta\text{pH} = \text{pH}_f - \text{pH}_i$) and plotted versus pH_i . The PZC was determined based on the obtained curve and corresponds to the pH_i for which the curve intercepts the x-axis, or in other terms when $\text{pH}_i = \text{pH}_f$. The adsorbent surface is mainly positively charged at pH values below the PZC, whereas the adsorbent will be mainly negatively charged at pH values above the PZC.

The specific surface area was determined using a Micromeritics Instrument (Gemini VII 2380), performing the degassing of the samples at 120 °C. Nitrogen adsorption-desorption experiments were carried out through liquid nitrogen at -196 °C. The total pore volume (V_p) was estimated at a relative pressure of 0.99. The calculation of the specific surface area (S_{BET}) was performed using the Brunauer-Emmet-Teller equation, proposed by Brunauer, Emmett [2], within the relative pressure range of 0.001 to 0.1. Microporosity (W_0) was evaluated through the Dubinin-Astakhov equation [3], focusing on the lower relative pressure region of the nitrogen adsorption isotherm. The Stoeckli-Ballerini equation [4] was applied to determine the average micropore width (L). The average pore diameter parameter (D) was calculated following the equation $D = 2x V_p/S_{\text{BET}}$.

Section S2. Chemical quantification

Quantification of contaminants' concentrations in all samples was made by Reverse-phase (C18 column) High Performance Liquid Chromatography (HPLC) with UV-Vis or fluorescence detection, except for MET which was quantified by Capillary Zone Electrophoresis (CZE) with UV-Vis detection. Three instrumental replicates were run per experimental replicate. Before any quantifications, calibration curves were established. For that, solutions of each tested chemical were prepared in dechlorinated tap water. Tested chemical solutions were prepared using calibrated instruments and following the best laboratory practices. No carrier solvents were used, and full dissolution in stocks used for spiking test solutions was ensured by applying internally optimized protocols using ultrasound baths. The experimental apparatus was carefully washed and decontaminated before and after use.

For the quantification using HPLC, a Shimadzu LC 20AT Prominence system (model DGU-20A5) was utilized, featuring a DGU-20As prominence degasser, a high-pressure LC-20AD prominence pump, and a CTO-10ASVP column oven. The HPLC setup was connected to an ESA Inc. model 542 autosampler. For separation, an ACE C18-PFP column (5 μ m, 150 mm \times 4.6 mm) was employed. The column was conditioned daily, both before and after batch analyses, using a mobile phase of 100% acetonitrile. All mobile phases used were filtered prior to their use through a 0.2 μ m polyamide membrane (Whatman). Detection was carried out using an SPD-20A prominence UV/Vis detector, while an RF-20A XS prominence fluorescence detector was specifically used for the analysis of FXT. A detailed description of each condition can be found in Table 1.

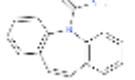
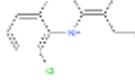
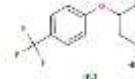
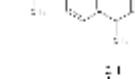
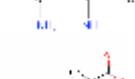
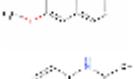
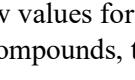
For the quantification of MET, CZE was applied using a Beckman P/ACE MDQ (Fullerton, CA, USA) system equipped with a UV/Vis detector and controlled by the 32 Karat software. The capillary was conditioned before its first use by flushing it with 1.0 M NaOH for 10 min, followed by water for 5 min, and finally with the electrolyte solution (15 mM sodium tetraborate) for 2 min.

The separation conditions for MET quantification were as follows: the capillary was rinsed with 0.1 M NaOH (1.5 min at 20 psi), followed by ultrapure water (1 min at 20 psi), and then with 15 mM sodium tetraborate (1.5 minutes at 20 psi). The sample was injected by hydrodynamic injection for 4 sec at 0.5 psi, and the capillary was rinsed with ultrapure water for 30 sec at 0.5 psi. Separation was performed with 15 mM sodium tetraborate for 2 min at 15 kV. Quantification was conducted at a wavelength of 200 nm.

Table 1. Chromatographic conditions used for each compound: caffeine (CAF), carbamazepine (CBZ), sulfamethoxazole (SMX), paracetamol (PCT), fluoxetine (FXT), ibuprofen (IBU), naproxen (NPX), and diclofenac (DIC).

Chromatographic conditions				
Mobile phase composition		Injection volume (μL)	Flow (mL·min ⁻¹)	Detection (nm)
CAF	acetonitrile/water (20/80 v/v)	20	0.8	UV: 275
CBZ	acetonitrile/water (40/60 v/v)	40	0.8	UV: 215
SMX	formic acid 1%/acetonitrile (70/30 v/v)	20	0.8	UV: 254
PCT	acetonitrile/acetic acid 0.1% (10/90 v/v)	20	0.8	UV: 248
FXT	formic acid 1%/acetonitrile (65/45 v/v)	40	0.7	Fluorescence: λ_{exc} 232 λ_{ems} 292
IBU	acetonitrile/ultrapure water (pH 2.2)	20	1.0	UV: 222
NPX	adjusted with phosphoric acid)			
DIC	(65/35 v/v)			

Validation parameters of the used chromatographic and electrophoretic methodologies were evaluated, namely, adequacy of the calibration dynamic range; limit of detection (LoD); limit of quantification (LoQ); correlation coefficient; repeatability, and intermediate repeatability analysis. Also, before each analysis, a solution containing methanol (100%) followed by ultrapure water was injected to ensure the absence of possible interferents in the HPLC column.








For CAF, CBZ, DIC, FXT, IBU, NAP, PCT and SMX, chromatographic peak areas were calculated from the chromatograms using integration tools as provided by the manufacturer. The previously determined calibration curves (obtained using external standards) were used to calculate the concentration in each sample. In the case of metformin, the same procedure was applied but peak areas were determined from the electropherograms.

The LoD and LoQ obtained for each compound are depicted in Table 2.

Table 2: Limit of Detection (LoD) and Limit of Quantification (LoQ) for caffeine (CAF), carbamazepine (CBZ), diclofenac (DIC), fluoxetine (FXT), ibuprofen (IBU), metformin (MET), naproxen (NPX), paracetamol (PCT), and sulfamethoxazole (SMX).

	LoD (mg.L ⁻¹)	LoQ (mg.L ⁻¹)
CAF	0.022	0.074
CBZ	0.013	0.043
DIC	0.028	0.094
FXT	0.026	0.086
IBU	0.051	0.17
MET	0.072	0.24
NPX	0.020	0.067
PCT	0.013	0.045
SMX	0.0086	0.029

Table S1. Chemical structure and main physicochemical properties of the tested compounds. Log Dow: log of the n-octanol/water distribution coefficient; pKa: acid dissociation constant.

Compound	Abbreviation	Chemical structure	Speciation at the studied pH	Molecular formula	Molecular mass (g.mol ⁻¹)	Log Dow	pKa	Nr of H bond donors (¹³)
caffeine	CAF		neutral (^{1;10})	C ₈ H ₁₀ N ₄ O ₂	194.19	-0.55 at pH 7 (⁶)	0.61; 10.4 (⁹)	0
carbamazepine	CBZ		neutral (¹)	C ₁₅ H ₁₂ N ₂ O	236.27	2.25 at pH 8 (³)	2.3; 13.9 (⁷)	2
diclofenac	DIC		anionic (¹⁰)	C ₁₄ H ₁₀ Cl ₂ NNaO ₂	318.13	0.9 at pH 8 (⁵)	4.15 (⁵)	2
fluoxetine	FXT		cationic (¹¹)	C ₁₇ H ₁₉ ClF ₃ NO	345.8	2.38 at pH 8 (⁵)	9.80 (⁵)	2
ibuprofen	IBU		anionic (¹⁰)	C ₁₃ H ₁₈ O ₂	206.28	0.58 at pH 8 (⁵)	4.45 (⁵)	1
metformin	MET		cationic (¹²)	C ₄ H ₁₂ ClN ₅	165.62	-4.31 at pH 7 (²)	2.8; 11.6 (⁸)	4
naproxen	NPX		anionic (¹)	C ₁₄ H ₁₄ O ₃	230.26	-0.36 at pH 8 (⁵)	4.15 (¹)	1
paracetamol	PCT		neutral (^{1;4;10})	C ₈ H ₉ NO ₂	151.16	0.34 at pH 7 (²)	9.5-9.7 (⁴)	2
sulfamethoxazole	SMX		anionic (¹)	C ₁₀ H ₁₁ N ₃ O ₃ S	253.28	-1.54 at pH 8 (³)	1.8; 5.7 (⁷)	3

Note: It was intended to have log Dow values for all compounds at pH 8 (due to being closer to the pH of the dechlorinated tap water, used in the experiments) but, due to lack of information for some compounds, the corresponding values at pH 7 were used, instead.

(¹): [5] (²): [6]; (³): [7]; (⁴): [8]; (⁵): [9]; (⁶): [10]; (⁷): [11]; (⁸): [12]; (⁹): [13]; (¹⁰): [14]; (¹¹): [15]; (¹²): [16]; (¹³): [17]; for Met, DIC and FXT data was obtained from <https://pubchem.ncbi.nlm.nih.gov/>. The references are presented at the end of the document.

Table S2: Summary of literature records on the main properties of milled bivalve shells. S_{BET} : Specific Surface Area. PZC: Point of Zero Charge.

Material	Pretreatment	S_{BET} ($\text{m}^2 \cdot \text{g}^{-1}$)	Pore volume ($V_p, \text{cm}^3 \cdot \text{g}^{-1}$)	PZC	Reference
Marine bivalve shells from beaches (India)	Shells were washed with double distilled water, dried at 383 K (about 110 °C) for 24 h, and then crushed and ground using a ball mill, and sieved.	3.6	0.0065	-	[18]
Marine bivalve <i>Mytella falcata</i> shells (Brazil)	Shells were washed and dried in an oven at 60 °C for 8 h, and then crushed in an industrial blender.	65	0.0676	-	[19]
Mussel shells (63–150 μm) (New Zealand)		1.29	0.0064	-	
Oyster shells (63–150 μm) (New Zealand)		4.61	0.0190	-	
Scallop shells (63–150 μm) (New Zealand)	Shells were scrubbed with a stiff brush with cold tap water and then air-dried for 4–5 days at room temperature with minimal sun exposure. Whole shells were crushed by a ring mill.	2.23	0.0085	-	
Mussel shells (710–1180 μm) (New Zealand)		0.19	0.0009	-	[20]
Oyster shells (710–1180 μm) (New Zealand)		1.72	0.0069	-	
Scallop shells (710–1180 μm) (New Zealand)		0.46	0.0019	-	
Marine bivalve <i>Anadara inaequivalvis</i> shells (250 μm) (Turkey)	Shells were washed with tap water, brushed, re-washed with de-ionized water, and then dried at 100 °C for 24 h. Then, they were crushed into smaller pieces, ground, and sieved to 250 μm .	1.82	Median pore width: 120.7 nm	-	[21]
Marine bivalve <i>Anomalocardia brasiliiana</i> shells (Brazil)	Shells were washed in running water, dried in a heater for 3 h at 60 °C, triturated in a roll mill, and then in a ball mill.	4.44	0.00103	13.0	[22]
Marine bivalve <i>Meretrix lyrata</i> shells (Vietnam)	Shells were washed with tap water and then left to dry in the sun. Then, they were ground with a stone and sieved.	0.31	0.00127	-	[23]
Cockle shells (marine species)	Cockle shells were ground into powder using a blender and then sieved in the range of 80–120 mesh size. The sieved powder was oven-dried overnight at 105 °C.	3.4	0.017	The pH of the powdered shell was 9.62.	[24]
Scallop shells from a shellfish processing company (Ireland)	Scallop shells were mechanically cleaned and air-dried. Then, they were crushed using a hammer, and pulverized using a blender. The powder was sieved into different sizes (1.4 mm – 45 μm).	1.6207	0.007	9.4	[25]

Whelk shells from a shellfish processing company (Ireland)	Whelk shells were immersed in 3 % sodium hypochlorite solution for 1 h, rinsed thoroughly in water and oven dried at 105 °C for 2 h. Then, they were crushed using a hammer, and pulverized using a blender. The powder was sieved into different sizes (1.4 mm – 45 µm).	3.1837	0.0261	9.4	[25]
Shells from <i>Corbula trigona</i> , collected from a coastal lagoon (Republic of Côte d'Ivoire)	Shells were immersed in hydrogen peroxide (15 wt %) for 24 hours. After filtration, shells were washed several times with distilled water before being dried in an oven at 105 °C and further cooled in a desiccator. Shells were then crushed and ground in a porcelain mortar. The powder was sieved to collect the particles of sizes ranging between 100 and 250 µm.	--	--	8.2	[26]

Table S3. Removal rate (mean \pm standard deviation, expressed as $\mu\text{g.ind}^{-1}.\text{h}^{-1}$) of the tested compounds by *C. fluminea* after exposure to a solution containing the compounds at an initial concentration of 0.5 mg.L^{-1} and 1.0 mg.L^{-1} during the periods 0-6 h, 6-24 h, and 24-48 h. The removal rate *per* clam was calculated as: Removal rate = $\frac{C_j - C_i}{n \times (t_j - t_i)} \times V \times 1000$, where C_i and C_j represent the average concentration of the chemical in each replicate after biofiltration at times i and j (mg.L^{-1}), respectively; n is the number of clams *per* vial; t_i and t_j are the exposure times (h) and V is the volume of medium (0.50 L).

Initial concentration (mg.L^{-1})	Time period (h)	removal rate ($\mu\text{g.ind}^{-1}.\text{h}^{-1}$)				
		CAF	CBZ	DIC	FXT	IBU
0.5	0-6	0.41 ± 0.06	0.45 ± 0.05	0.6 ± 0.4	3.0 ± 0.1	0.3 ± 0.3
0.5	6-24	-- ^λ	-- ^λ	-- ^λ	0.04 ± 0.01	-- ^λ
0.5	24-48	0.20 ± 0.08	-- ^λ	-- ^λ	0.01 ± 0.01	0.09 ± 0.06
1.0	0-6	1 ± 1	0.73 ± 0.07	0.4 ± 0.4	6.2 ± 0.2	0.7 ± 0.2
1.0	6-24	0.3 ± 0.3	-- ^λ	-- ^λ	0.19 ± 0.02	0.1 ± 0.1
1.0	24-48	-- ^λ	-- ^λ	-- ^λ	0.05 ± 0.03	-- ^λ

Initial concentration (mg.L^{-1})	Time period (h)	removal rate ($\mu\text{g.ind}^{-1}.\text{h}^{-1}$)			
		MET	NPX	PCT	SMX
0.5	0-6	0.6 ± 0.1	$0.3 \pm$	0.8 ± 0.4	0.3 ± 0.1
0.5	6-24	-- ^λ	-- ^λ	0.10 ± 0.05	-- ^λ
0.5	24-48	0.06 ± 0.03	-- ^λ	0.20 ± 0.08	0.04 ± 0.04
1.0	0-6	1.7 ± 0.4	2 ± 1	1.6 ± 0.8	-- ^λ
1.0	6-24	0.1 ± 0.1	-- ^λ	-- ^λ	-- ^λ
1.0	24-48	0.5 ± 0.2	-- ^λ	0.38 ± 0.05	-- ^λ

^λ The contaminant concentration in the treated water did not differ from the concentration in the control, and thus no removal was observed.

Table S4. Summary of the statistical analysis regarding the effect of the initial concentration (0.5 and 1.0 mg.L⁻¹) and the exposure time (6 h, 24 h, and 48 h) on the removal percentage by *C. fluminea*. *p*-values lower than 0.05 are highlighted in bold.

Compound	Statistical test	<i>p</i> -value
CAF	ANOVA on ranks	H(5) = 40.798; <i>p</i> ≤ 0.001
CBZ	2-way ANOVA	Time: F _(2, 66) = 2.892; <i>p</i> = 0.062 Initial concentration: F _(1, 66) = 35.515; <i>p</i> < 0.001 Interaction: F _(2, 66) = 1.012; <i>p</i> = 0.369
DIC	2-way ANOVA	Time: F _(2, 65) = 4.007; <i>p</i> = 0.023 Initial concentration: F _(1, 65) = 8.569; <i>p</i> = 0.005 Interaction: F _(2, 65) = 4.457; <i>p</i> = 0.015
FXT	ANOVA on ranks	H(5) = 59.655; <i>p</i> ≤ 0.001
IBU	2-way ANOVA	Time: F _(2, 65) = 35.090; <i>p</i> < 0.001 Initial concentration: F _(2, 65) = 4.614; <i>p</i> = 0.035 Interaction: F _(2, 65) = 6.437; <i>p</i> = 0.003
MET	2-way ANOVA	Time: F _(2, 65) = 100.583; <i>p</i> < 0.001 Initial concentration: F _(2, 65) = 56.085; <i>p</i> < 0.001 Interaction: F _(2, 65) = 22.892; <i>p</i> < 0.001
NPX	ANOVA on ranks	H(5) = 37.721; <i>p</i> ≤ 0.001
PCT	2-way ANOVA	Time: F _(2, 66) = 89.009; <i>p</i> < 0.001 Initial concentration: F _(2, 66) = 9.686; <i>p</i> = 0.003 Interaction: F _(2, 66) = 2.602; <i>p</i> = 0.082
SMX	2-way ANOVA	Time: F _(2, 66) = 11.520; <i>p</i> < 0.001 Initial concentration: F _(2, 66) = 11.695; <i>p</i> < 0.001 Interaction: F _(2, 66) = 9.174; <i>p</i> < 0.001

Table S5. Pearson correlation between the physicochemical properties of the tested compounds (log Dow and molar mass) and the removal endpoints, regarding the biofiltration experiments. A) for the 9 tested compounds; b) excluding compounds with molecular mass above 300 g.mol⁻¹ (diclofenac and fluoxetine). *p*-values below 0.05 are highlighted in bold.

a)	Removal %	Removal %	Removal %	Removal %
N = 9	0.5 mg.L⁻¹ 6 h	0.5 mg.L⁻¹ 48 h	1.0 mg.L⁻¹ 6 h	1.0 mg.L⁻¹ 48 h
Log Dow	<i>p</i> = 0.443 <i>p</i> = 0.233	<i>p</i> = 0.355 <i>p</i> = 0.349	<i>p</i> = 0.345 <i>p</i> = 0.363	<i>p</i> = 0.158 <i>p</i> = 0.684
Molar mass	<i>p</i> = 0.587 <i>p</i> = 0.0967	<i>p</i> = 0.161 <i>p</i> = 0.680	<i>p</i> = 0.438 <i>p</i> = 0.238	<i>p</i> = 0.179 <i>p</i> = 0.645
b)	Removal %	Removal %	Removal %	Removal %
N = 7	0.5 mg.L⁻¹ 6 h	0.5 mg.L⁻¹ 48 h	1.0 mg.L⁻¹ 6 h	1.0 mg.L⁻¹ 48 h
Log Dow	<i>p</i> = -0.0602 <i>p</i> = 0.898	<i>p</i> = 0.0653 <i>p</i> = 0.889	<i>p</i> = -0.161 <i>p</i> = 0.730	<i>p</i> = -0.381 <i>p</i> = 0.399
Molar mass	<i>p</i> = -0.813 <i>p</i> = 0.0262	<i>p</i> = -0.877 <i>p</i> = 9.54x10⁻³	<i>p</i> = -0.658 <i>p</i> = 0.108	<i>p</i> = -0.982 <i>p</i> = 8.06x10⁻⁵

Table S6. Summary of the statistical analysis regarding the effect of the initial concentration on the removal percentage of each compound by the milled *C. fluminea* shells. *p*-values lower than 0.05 are highlighted in bold.

Compound	Statistical test	<i>p</i> -value
CAF	<i>t</i> -test	<i>t</i> (16) = 7.863; <i>p</i> = 6.93 x 10⁻⁷
CBZ	<i>t</i> -test	<i>t</i> (16) = 2.615; <i>p</i> = 0.0188
DIC	<i>t</i> -test	<i>U</i> = 22.000; <i>p</i> = 0.112
FXT	<i>t</i> -test	<i>U</i> = 27.000; <i>p</i> = 0.251
IBU	<i>t</i> -test	<i>t</i> (16) = -1.398; <i>p</i> = 0.181
MET	<i>t</i> -test	<i>U</i> = 16.000; <i>p</i> = 0.034
NPX	<i>t</i> -test	<i>U</i> = 27.000; <i>p</i> = 0.251
PCT	<i>t</i> -test	<i>t</i> (16) = 0.553; <i>p</i> = 0.588
SMX	<i>t</i> -test	<i>U</i> = 31.000; <i>p</i> = 0.427

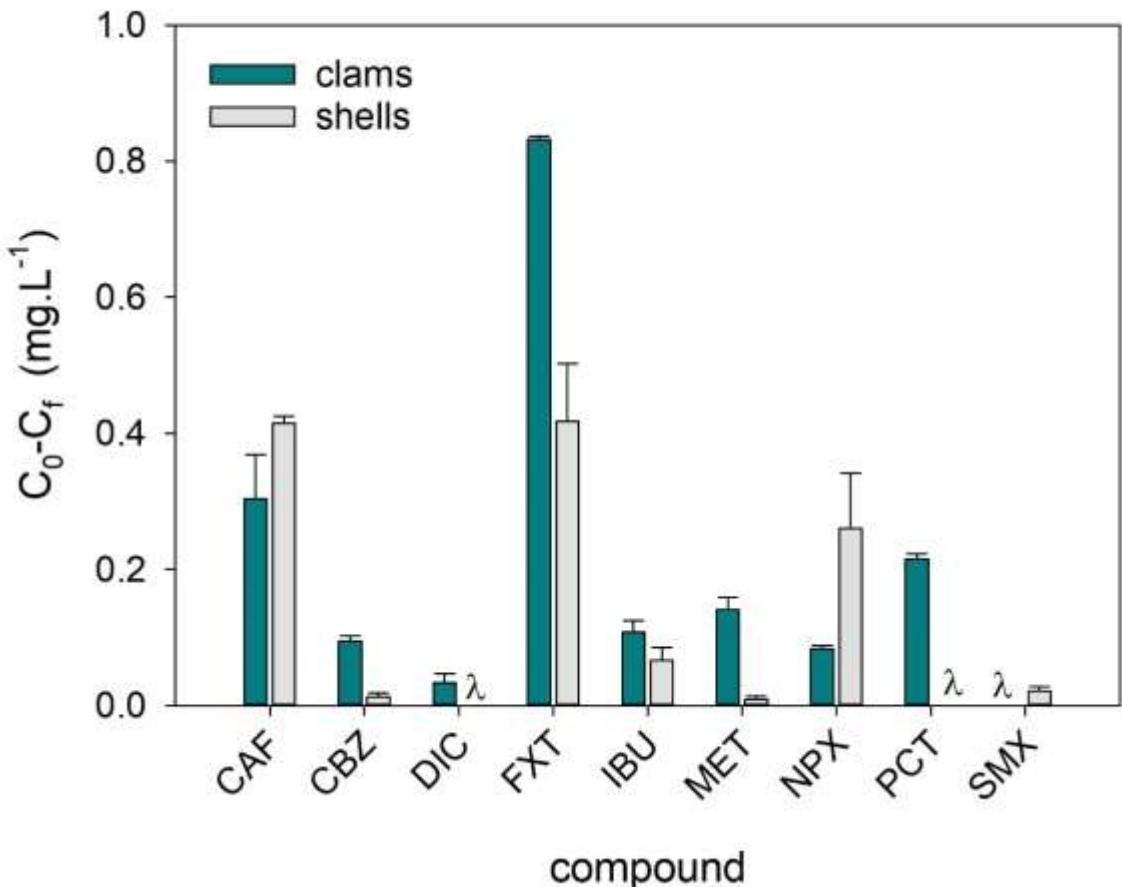
Table S7. Summary of the statistical analysis regarding the effect of the initial concentration on the adsorption capacity of each compound by the milled *C. fluminea* shells. *p*-values lower than 0.05 are highlighted in bold.

Compound	Statistical test	<i>p</i> -value
CAF	<i>t</i> -test	<i>t</i> (4) = -11.804; <i>p</i> = 2.95 x 10⁻⁴
CBZ	<i>t</i> -test	<i>t</i> (4) = 0.130; <i>p</i> = 0.903
DIC	<i>t</i> -test	<i>t</i> (4) = -0.185; <i>p</i> = 0.862
FXT	<i>t</i> -test	<i>t</i> (4) = -2.676; <i>p</i> = 0.0555
IBU	<i>t</i> -test	<i>t</i> (4) = -2.052; <i>p</i> = 0.109
MET	<i>t</i> -test	<i>t</i> (4) = 2.360; <i>p</i> = 0.0777
NPX	<i>t</i> -test	<i>t</i> (4) = -0.818; <i>p</i> = 0.459
PCT	<i>t</i> -test	<i>t</i> (4) = 0.762; <i>p</i> = 0.488
SMX	<i>t</i> -test	<i>t</i> (4) = -2.065; <i>p</i> = 0.108

Table S8. Pearson correlation between the physicochemical properties of the tested compounds and the removal endpoints, regarding the biosorption experiments. *p*-values lower than 0.05 are highlighted in bold.

N = 9	Removal % 0.5 mg.L ⁻¹ 24 h	Removal % 1.0 mg.L ⁻¹ 24 h	Adsorption capacity 0.5 mg.L ⁻¹ 24 h (nmol.g ⁻¹) *	Adsorption capacity 1.0 mg.L ⁻¹ 24 h (nmol.g ⁻¹) *
Log Dow	<i>p</i> = 0.164; <i>p</i> = 0.674	<i>p</i> = 0.229; <i>p</i> = 0.554	<i>p</i> = -0.0454; <i>p</i> = 0.908	<i>p</i> = 0.131; <i>p</i> = 0.737
Molecular mass (g.mol⁻¹)	<i>p</i> = 0.175; <i>p</i> = 0.653	<i>p</i> = 0.266; <i>p</i> = 0.488	<i>p</i> = -0.0277; <i>p</i> = 0.944	<i>p</i> = 0.103; <i>p</i> = 0.791
Nr of H bond donors	<i>p</i> = -0.639; <i>p</i> = 0.0638	<i>p</i> = -0.609; <i>p</i> = 0.0815	<i>p</i> = -0.618; <i>p</i> = 0.0760	<i>p</i> = -0.711; <i>p</i> = 0.0317

* For this analysis, adsorption capacity values were converted from $\mu\text{g.g}^{-1}$ to nmol.g^{-1} , considering that the analyzed correlations should be evaluated at molecular and not mass level.


Table S9. Summary of EC50 values (when available, 95% Confidence Interval, CI, or standard deviation (SD)/error (SE), are provided within parenthesis) collected from the literature for *Raphidocelis subcapitata* exposed to each tested compound. The references are presented at the end of the document. GR: Growth Rate.

Compound	Endpoint	EC50 (mg.L ⁻¹)	Reference
CAF	GR inhibition (72 h)	870.3 (± 3.25 SD)	[27]
	GR inhibition (72 h)	> 100	[28]
CBZ	GR inhibition (72 h)	> 100	[29]
	GR inhibition (72 h)	> 100	[30]
DIC	GR inhibition (72 h)	19.05 (CI: 15.58–23.30)	[31]
	GR inhibition (72 h)	21.30 (CI: 18.43–26.32)	[30]
	Growth inhibition (72 h)	8.03 (± 1.5 SD)	[32]
FXT	GR inhibition (72 h)	0.20 (CI: 0.18–0.21)	[30]
	Growth inhibition (96 h)	0.04499 (± 0.00176 SE)	[33]
IBU	GR inhibition (72 h)	93.26 (CI: 77.78–122.07)	[28]
	Growth inhibition (72 h)	20.05 (± 5.14 SD)	[32]
MET	GR inhibition (72 h)	> 258.3	[34]
NPX	GR inhibition (72 h)	27.10 (CI: 24.82 – 29.71)	[28]
	GR inhibition (72 h)	44.40 (CI: 40.49–45.95)*	[30]
PCT	GR inhibition (72 h)	> 100	[30]
	Growth inhibition (72 h)	317.4 (CI: 292.6-341.4)	[35]
SMX	GR inhibition (72 h)	1.12 (CI: 0.84–2.84)	[30]
	GR inhibition (72 h)	4.36 (CI: 3.46 – 5.52)	[28]
	Growth inhibition (96 h)	0.49	[36]

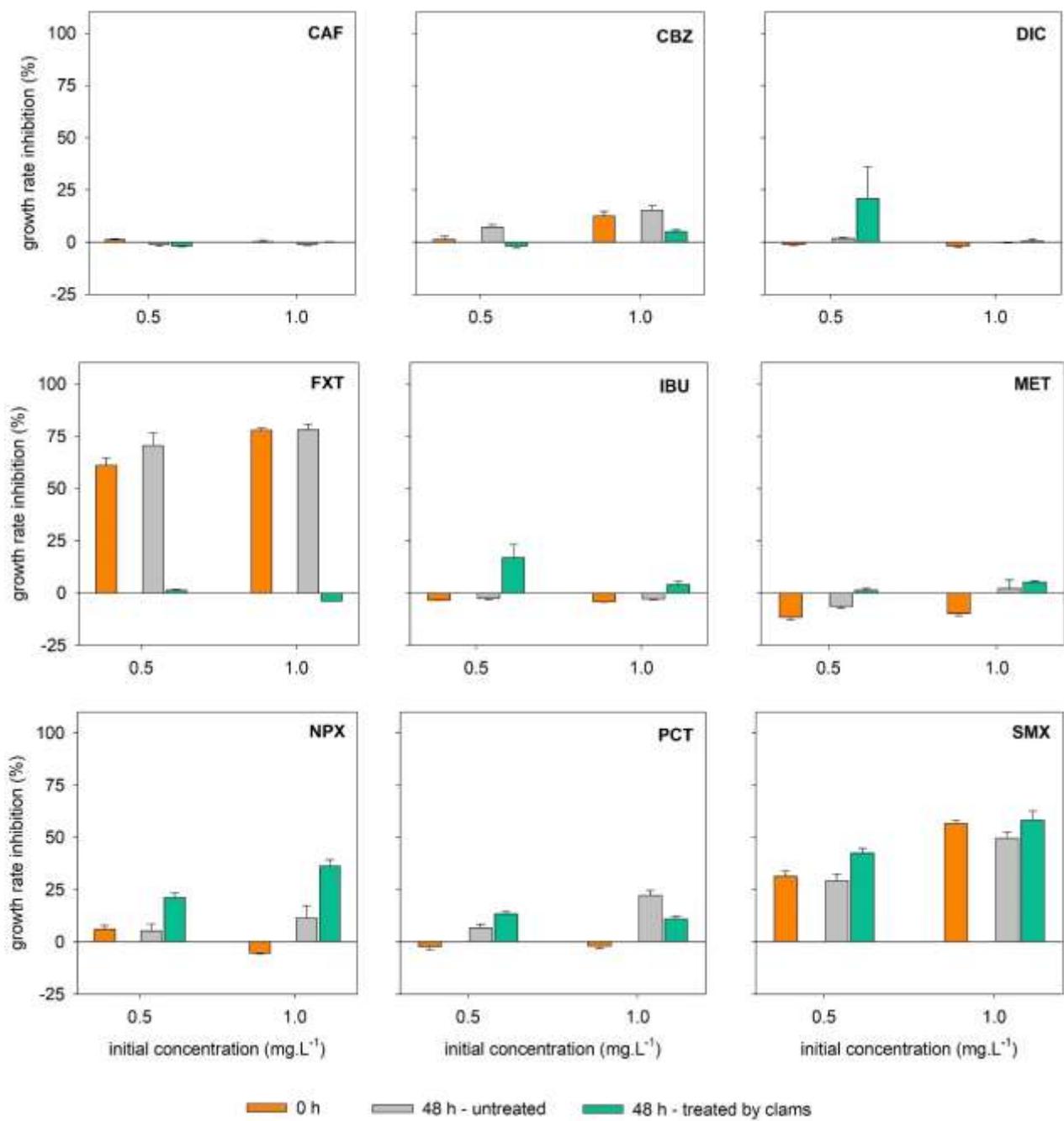
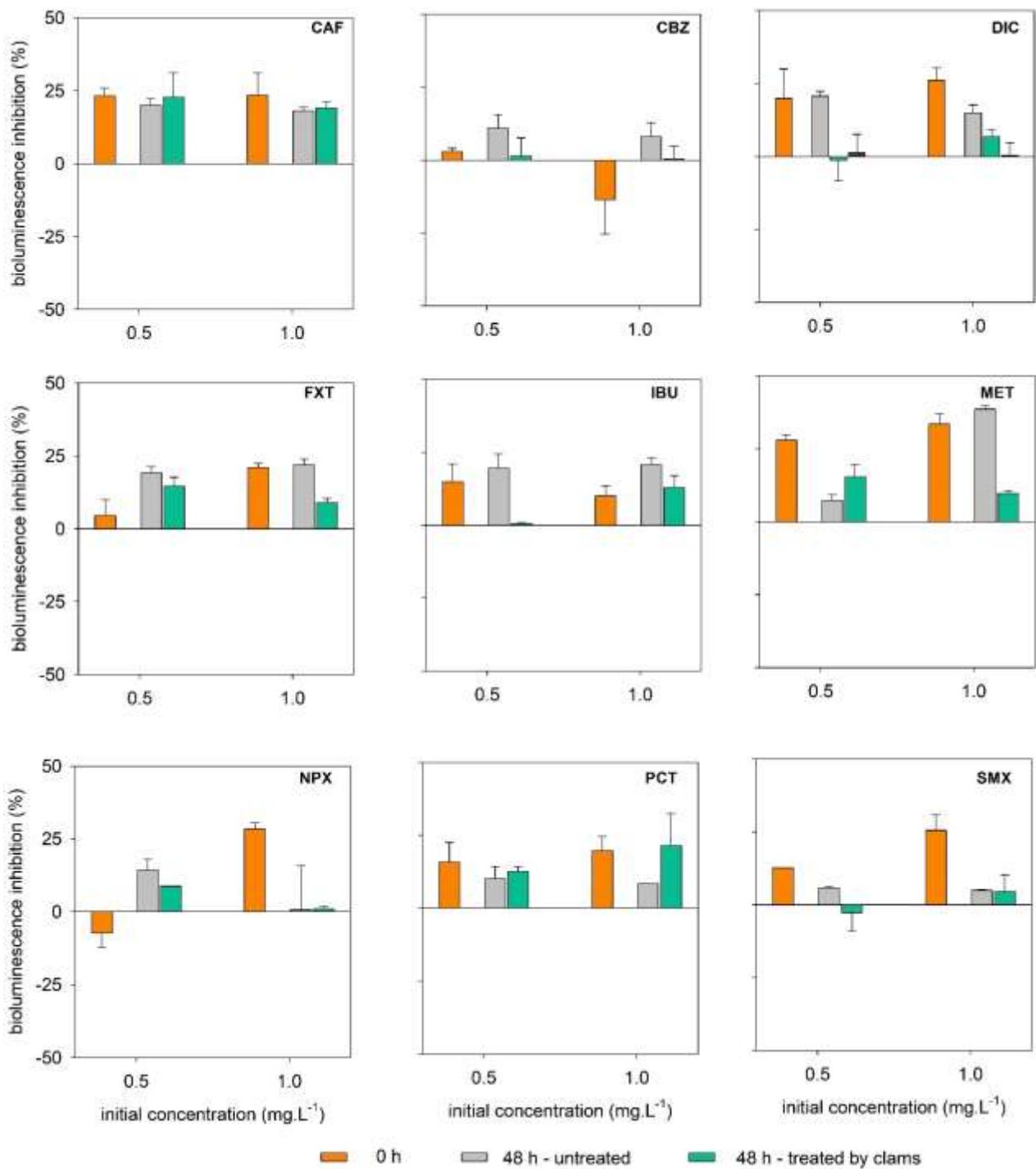
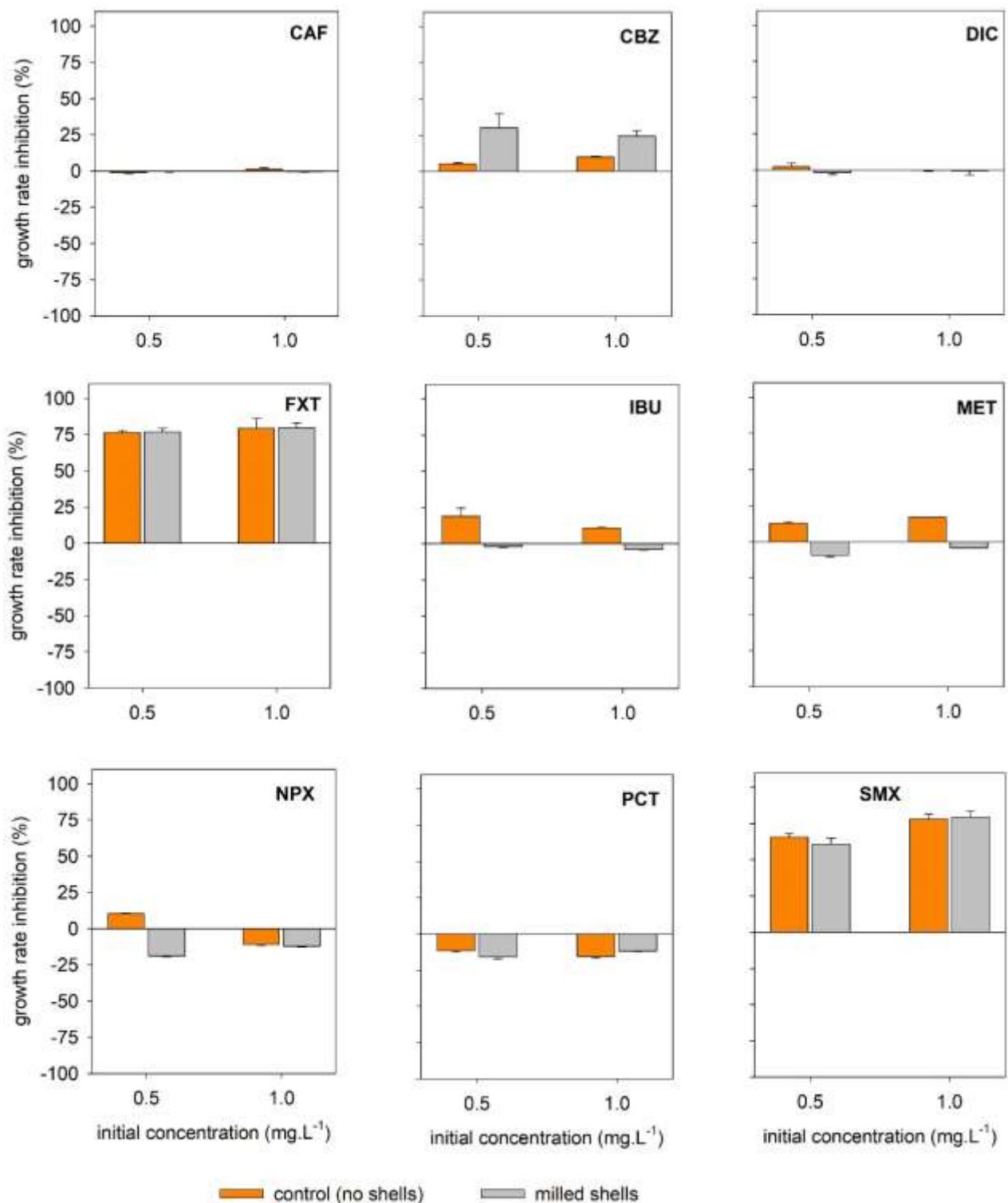
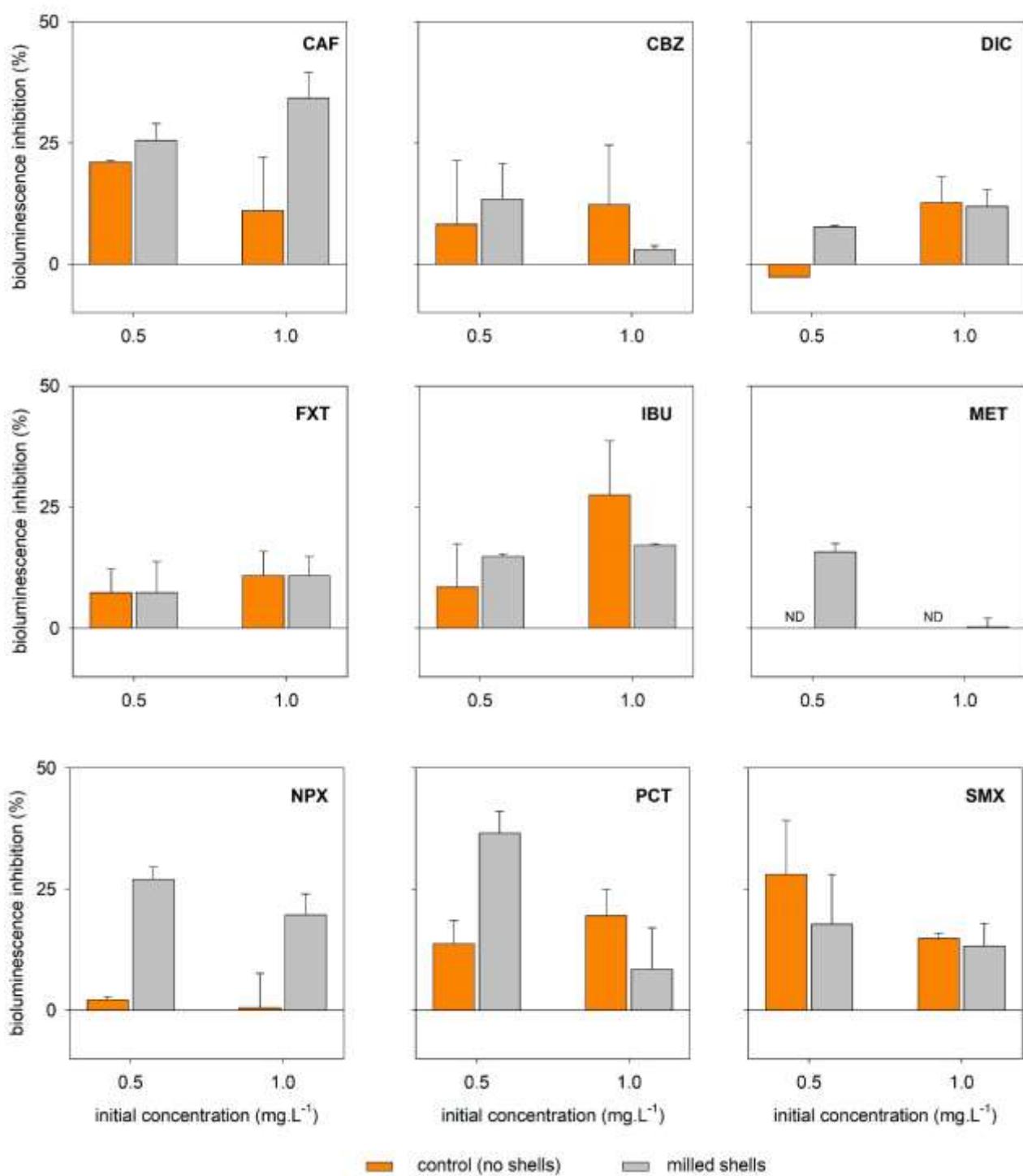

*Na-NPX

Table S10. Summary of EC50 values (when available, 95% Confidence Interval, CI, or standard deviation, SD, are provided within parenthesis) collected from the literature for *Aliivibrio fischeri* exposed to each tested compound, all concerning bioluminescence inhibition, at different exposure periods (Time). The references are presented at the end of the document.


Compound	Time	EC50 (mg.L ⁻¹)	Reference
CAF	5 min	317	[37]
	15 min	632.0 (CI: 569.1–694.7)	[38]
	30 min	1244.3 (± 71.8 SD)	[39]
CBZ	15 min	52.22 (CI: 45.84–59.47)	[40]
	15 min	94.0 (CI: 82.03–105.91)	[38]
	30 min	> 81	[41]
	30 min	> 100	[42]
DIC	15 min	15.9 (CI: 14.59–17.26)	[38]
	15 min	16.31 (± 0.72 SD)	[43]
	15 min	25.36	[44]
	30 min	11.62	[42]
	30 min	11.454	[41]
FXT	15 min	35.44	[45]
IBU	15 min	39.93 (± 2.2 SD)	[43]
	15 min	18.3 (CI: 15.96–20.58)	[38]
	30 min	14.97	[42]
MET	15 min	755.4 (CI: 129.7–4400)	[40]
	30 min	> 870.79	[46]
NPX	15 min	47.07 (± 1.45 SD)	[43]
	30 min	25.17	[42]
PCT	15 min	301.41	[44]
	15 min	697 (± 48 SD)	[47]
	15 min	390.2 (CI: 241.5–630.7)	[40]
SMX	15 min	49.49	[44]
	15 min	50.51 (± 2.28 SD)	[48]
	15 min	> 84	[41]
	30 min	51.77	[42]


Figure S1. Decrease on the compound concentration, expressed as the difference between the contaminant concentration in the control (C_0) and the concentration in the treated sample (C_r), after treatment by *C. fluminea* (biofiltration) and by *C. fluminea* milled shells (biosorption), during 24 h, considering a solution with an initial concentration of 1.0 mg.L⁻¹. Bars represent the mean and error bars represent the standard error. The asterisks represent statistical differences between both approaches for each compound (t-test; $p < 0.05$). λ: The contaminant concentration in the treated water did not differ from the concentration in the control, and thus no removal was observed.


Figure S2. Growth rate inhibition of *R. subcapitata* exposed to samples (0.5 and 1.0 mg.L⁻¹) before any treatment (0 h) and after 48 h of aeration (48 h – untreated; no clams) or biofiltration by *C. fluminea* (48 h – treated by clams). Bars represent the mean and error bars represent the standard error.

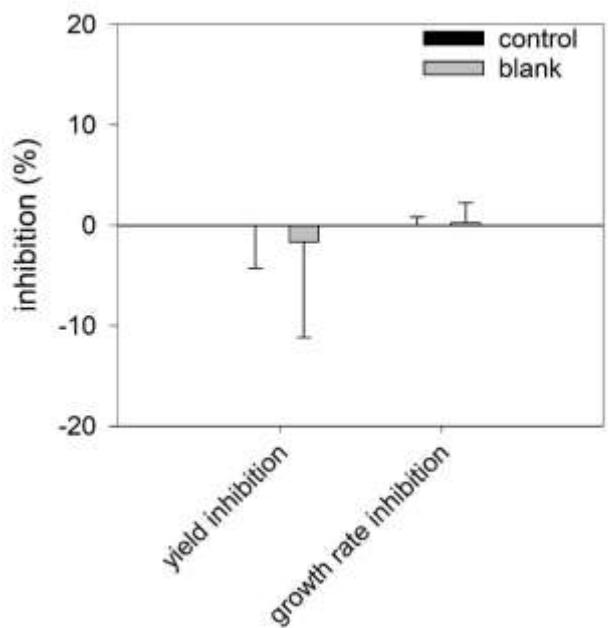

Figure S3. Bioluminescence inhibition of *A. fischeri* exposed to samples (0.5 and 1.0 mg.L⁻¹) before any treatment (0 h) and after 48 h of aeration (48 h – untreated; no clams) or biofiltration by *C. fluminea* (48 h – treated by clams). Bars represent the mean and error bars represent the standard error.

Figure S4. Growth rate inhibition of *R. subcapitata* exposed to samples (0.5 and 1.0 mg.L⁻¹) that were previously in contact with *C. fluminea* milled shells (milled shells) or untreated (control, no shells) during 24 h. Bars represent the mean and error bars represent the standard error.

Figure S5. Bioluminescence inhibition of *A. fischeri* exposed to samples (0.5 and 1.0 mg.L⁻¹) that were previously in contact with *C. fluminea* milled shells (milled shells) or untreated (control, no shells) during 24 h. Bars represent the mean and error bars represent the standard error. ND: not determined.

Figure S6. Comparative inhibition of the controls and the blank samples from the biofiltration experiment for the growth inhibition endpoints of *R. subcapitata*. No statistically significant differences were found for both treatments for each endpoint (*t*-test, $p \geq 0.05$).

References

1. Sousa, É.M., M. Otero, L.S. Rocha, M.V. Gil, P. Ferreira, V.I. Esteves, and V. Calisto, *Multivariable optimization of activated carbon production from microwave pyrolysis of brewery wastes-Application in the removal of antibiotics from water*. Journal of hazardous materials, 2022. **431**: p. 128556.
2. Brunauer, S., P.H. Emmett, and E. Teller, *Adsorption of gases in multimolecular layers*. Journal of the American chemical society, 1938. **60**(2): p. 309-319.
3. Dubinin, M., *Physical adsorption of gases and vapors in micropores*, in *Progress in surface and membrane science*, J.F.D.a.M.D. Rosenberg, Editor. 1975, Academic: London. p. 1-70.
4. Stoeckli, F. and L. Ballerini, *Evolution of microporosity during activation of carbon*. Fuel, 1991. **70**(4): p. 557-559.
5. Martínez-Hernández, V., R. Meffe, S. Herrera, E. Arranz, and I. de Bustamante, *Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment*. Science of The Total Environment, 2014. **472**: p. 273-281.
6. Wells, M.J.M., *Log DOW: Key to Understanding and Regulating Wastewater-Derived Contaminants*. Environmental Chemistry, 2006. **3**(6): p. 439-449.
7. Bizi, M. and F.-E. El Bachra, *Transport of Carbamazepine, Ciprofloxacin and Sulfamethoxazole in Activated Carbon: Solubility and Relationships between Structure and Diffusional Parameters*. molecules, 2021. **26**(23): p. 7318.
8. Lin, A.Y.-C., C.-A. Lin, H.-H. Tung, and N.S. Chary, *Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments*. Journal of Hazardous Materials, 2010. **183**(1): p. 242-250.
9. Köhler, H.-R., T. Gräff, M. Schweizer, J. Blumhardt, J. Burkhardt, L. Ehmann, J. Hebel, C. Heid, L. Kundy, J. Kuttler, M. Malusova, F.-M. Moroff, A.-F. Schlösinger, P. Schulze-Berge, E.I. Panagopoulou, D.E. Damalas, N.S. Thomaidis, R. Triebeskorn, D. Maletzki, U. Kühnen, and P.C. von der Ohe, *LogD-based modelling and ΔlogD as a proxy for pH-dependent action of ionizable chemicals reveal the relevance of both neutral and ionic species for fish embryotoxicity and possess great potential for practical application in the regulation of chemicals*. Water Research, 2023. **235**: p. 119864.
10. Zhang, D.Q., R.M. Gersberg, J. Zhu, T. Hua, K.B.S.N. Jinadasa, and S.K. Tan, *Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland*. Environmental Pollution, 2012. **167**: p. 124-131.
11. Calisto, V., C.I.A. Ferreira, J.A.B.P. Oliveira, M. Otero, and V.I. Esteves, *Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons*. Journal of Environmental Management, 2015. **152**: p. 83-90.
12. Zhu, S., Y.-g. Liu, S.-b. Liu, G.-m. Zeng, L.-h. Jiang, X.-f. Tan, L. Zhou, W. Zeng, T.-t. Li, and C.-p. Yang, *Adsorption of emerging contaminant metformin using graphene oxide*. Chemosphere, 2017. **179**: p. 20-28.
13. Cravo, A., S. Silva, J. Rodrigues, V.V. Cardoso, M.J. Benoliel, C. Correia, M.R. Coelho, M.J. Rosa, and C.M.M. Almeida, *Understanding the bioaccumulation of pharmaceutical active compounds by clams Ruditapes decussatus exposed to a UWWTP discharge*. Environmental Research, 2022. **208**: p. 112632.
14. Licona, K.P.M., L.R.d.O. Geaquito, J.V. Nicolini, N.G. Figueiredo, S.C. Chiapetta, A.C. Habert, and L. Yokoyama, *Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water*. Journal of Water Process Engineering, 2018. **25**: p. 195-204.
15. McDougall, L., L. Thomson, S. Brand, A. Wagstaff, L.A. Lawton, and B. Petrie, *Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices*. Science of The Total Environment, 2022. **808**: p. 152071.
16. Briones, R.M. and A.K. Sarmah, *Insight into the sorption mechanism of metformin and its transformation product guanylurea in pastoral soils and model sorbents*. Science of The Total Environment, 2018. **645**: p. 1323-1333.
17. Fu, J., W.-N. Lee, C. Coleman, K. Nowack, J. Carter, and C.-H. Huang, *Removal of pharmaceuticals and personal care products by two-stage biofiltration for drinking water treatment*. Science of The Total Environment, 2019. **664**: p. 240-248.

18. Chowdhury, S. and P. Saha, *Sea shell powder as a new adsorbent to remove Basic Green 4 (Malachite Green) from aqueous solutions: Equilibrium, kinetic and thermodynamic studies*. Chemical Engineering Journal, 2010. **164**(1): p. 168-177.

19. Silva, T.S., L. Meili, S.H.V. Carvalho, J.I. Soletti, G.L. Dotto, and E.J.S. Fonseca, *Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption from water by Mytella falcata waste*. Environmental Science and Pollution Research, 2017. **24**(24): p. 19927-19937.

20. Thind, J., D.R. McDougall, M.I. Jones, and A.G. Jeffs, *Preliminary Laboratory Investigations into Zinc and Copper Adsorption by Crushed Bivalve Shells*. Water Air Soil Pollution, 2022. **233**(322).

21. Bozbaş, S.K. and Y. Boz, *Low-cost biosorbent: Anadara inaequivalvis shells for removal of Pb(II) and Cu(II) from aqueous solution*. Process Safety and Environmental Protection, 2016. **103**: p. 144-152.

22. de Paiva, T.M.N., T.J.M. Fraga, D.C.S. Sales, M.N. Carvalho, and M.A. da Motta Sobrinho, *Anomalocardia brasiliiana shellfish shells as a novel and ecofriendly adsorbent of Nylosan Brilliant Blue acid dye*. Water Science and Technology, 2018. **78**(7): p. 1576-1586.

23. Nguyen, T.A.H., H.H. Ngo, W.S. Guo, T.T. Nguyen, N.D. Vu, S. Soda, T.H.H. Nguyen, M.K. Nguyen, T.V.H. Tran, T.T. Dang, V.H. Nguyen, and T.H. Cao, *White hard clam (Meretrix lyrata) shells as novel filter media to augment the phosphorus removal from wastewater*. Science of The Total Environment, 2020. **741**: p. 140483.

24. Kim, Y., D. Kim, S.W. Kang, Y.H. Ham, J.H. Choi, Y.P. Hong, and K.S. Ryoo, *Use of powdered cockle shell as a bio-sorbent material for phosphate removal from water*. Bulletin of the Korean Chemical Society, 2018. **39**(12): p. 1362-1367.

25. Brakemi, E., K. Michael, S.P. Tan, and H. Helen, *Phosphate removal from wastewater using scallop and whelk shells*. Journal of Water Process Engineering, 2023. **55**: p. 104159.

26. Yapo, N.Z.S., B.G.H. Briton, S. Aw, L. Reinert, P. Drogui, and K. Adouby, *Bivalve shells (Corbula trigona) as a new adsorbent for the defluoridation of groundwater by adsorption-precipitation*. Journal of Environmental Science and Health, Part A, 2021. **56**(6): p. 694-704.

27. Lomba, L., D. Lapeña, N. Ros, E. Aso, M. Cannavò, D. Errazquin, and B. Giner, *Ecotoxicological study of six drugs in Aliivibrio fischeri, Daphnia magna and Raphidocelis subcapitata*. Environmental Science and Pollution Research, 2020. **27**(9): p. 9891-9900.

28. Grabarczyk, Ł., E. Mulkiewicz, S. Stolte, A. Puckowski, M. Pazda, P. Stepnowski, and A. Biały-Bielińska, *Ecotoxicity screening evaluation of selected pharmaceuticals and their transformation products towards various organisms*. Environmental Science Pollution Research, 2020. **27**(21): p. 26103-26114.

29. European Commission, *Commission staff working document - Impact Assessment Report - Accompanying the document Proposal for a Directive of the European Parliament and of the Council amending Directive 2000/60/EC establishing a framework for Community action in the field of water policy, Directive 2006/118/EC on the protection of groundwater against pollution and deterioration and Directive 2008/105/EC on environmental quality standards in the field of water policy*. 2022.

30. Fu, W., A. Franco, and S. Trapp, *Methods for estimating the bioconcentration factor of ionizable organic chemicals*. Environmental Toxicology and Chemistry, 2009. **28**: p. 1372-1379.

31. Luongo, G., M. Guida, A. Siciliano, G. Libralato, L. Saviano, A. Amoresano, L. Previtera, G. Di Fabio, and A. Zarrelli, *Oxidation of diclofenac in water by sodium hypochlorite: Identification of new degradation by-products and their ecotoxicological evaluation*. Journal of Pharmaceutical and Biomedical Analysis, 2021. **194**: p. 113762.

32. Takara, M., M. Martinefski, V. Tripodi, Á.B. Juárez, and A. Magdaleno, *Effects of Non-steroidal Anti-inflammatory Drugs (Ibuprofen and Diclofenac) and Their Mixtures on the Growth of Three Green Algae*. Ecotoxicology Environmental Contamination, 2024. **19**(1): p. 61-71.

33. Johnson, D.J., H. Sanderson, R.A. Brain, C.J. Wilson, and K.R. Solomon, *Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae*. Ecotoxicology and Environmental Safety, 2007. **67**(1): p. 128-139.

34. He, Y., H. Jin, H. Gao, G. Zhang, and F. Ju, *Prevalence, production, and ecotoxicity of chlorination-derived metformin byproducts in Chinese urban water systems*. Science of The Total Environment, 2022. **816**: p. 151665.

35. Nunes, B., S.C. Antunes, J. Santos, L. Martins, and B.B. Castro, *Toxic potential of paracetamol to freshwater organisms: a headache to environmental regulators?* Ecotoxicology and Environmental Safety, 2014. **107**: p. 178-185.

36. Zhang, Y., D. He, F. Chang, C. Dang, and J. Fu, *Combined Effects of Sulfamethoxazole and Erythromycin on a Freshwater Microalga, Raphidocelis subcapitata: Toxicity and Oxidative Stress.* Antibiotics, 2021. **10**(5): p. 576.

37. Jennings, V.L.K., M.H. Rayner-Brandes, and D.J. Bird, *Assessing chemical toxicity with the bioluminescent photobacterium (vibrio fischeri): a comparison of three commercial systems.* Water Research, 2001. **35**(14): p. 3448-3456.

38. Di Nica, V., S. Villa, and A. Finizio, *Toxicity of individual pharmaceuticals and their mixtures to Aliivibrio fischeri: experimental results for single compounds and considerations of their mechanisms of action and potential acute effects on aquatic organisms.* Environmental Toxicology and Chemistry, 2017. **36**(3): p. 807-814.

39. Lee, Y., C. Fan, and F. Haque, *Hybrid combination of advanced oxidation and biological processes for the micropollutant removal of carbamazepine.* npj Clean Water, 2022. **5**(60).

40. Park, S.-J., S.-R. Oh, J.-Y. Jung, Y.-H. Kim, P.-G. Kim, and K.-H. Choi, *Preliminary Risk Assessment of Several Major Pharmaceutical Products In Aquatic Ecosystem.* in *Proceedings of the Korean Environmental Health Society Conference.* 2005. Korean Society of Environmental Health.

41. Ferrari, B., R. Mons, B. Vollat, B. Fraysse, N. Paxēaus, R.L. Giudice, A. Pollio, and J. Garric, *Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment?* Environmental Toxicology and Chemistry: An International Journal, 2004. **23**(5): p. 1344-1354.

42. Białk-Bielńska, A., Ł. Grabarczyk, E. Mulkiewicz, A. Puckowski, S. Stolte, and P. Stepnowski, *Mixture toxicity of six pharmaceuticals towards Aliivibrio fischeri, Daphnia magna, and Lemna minor.* Environmental Science and Pollution Research, 2022. **29**(18): p. 26977-26991.

43. Dökmeci, A.H., I. Dökmeci, and H. Ibar, *The Determination of Single and Mixture Toxicity at High Concentrations of Some Acidic Pharmaceuticals via Aliivibrio fischeri.* Environmental Processes, 2014. **1**(2): p. 95-103.

44. de García, S.O., P.A. García-Encina, and R. Irusta-Mata, *Dose-response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products.* Ecotoxicology, 2016. **25**(1): p. 141-162.

45. Montiel-Mora, J.R., M. Méndez-Rivera, D. Ramírez-Morales, J.C. Cambronero-Heinrichs, and C.E. Rodríguez-Rodríguez, *Toxicity of selected pharmaceuticals and their mixtures to the aquatic indicators Daphnia magna and Aliivibrio fischeri.* Ecotoxicology, 2024. **33**(9): p. 1047-1061.

46. Jacob, R.S., L.V. de Souza Santos, M. d'Auriol, Y.A.R. Lebron, V.R. Moreira, and L.C. Lange, *Diazepam, metformin, omeprazole and simvastatin: a full discussion of individual and mixture acute toxicity.* Ecotoxicology, 2020. **29**(7): p. 1062-1071.

47. Álvarez-Escalante, I., S. Martínez-Páramo, and R. Irusta-Mata, *Bacterial toxicity of Acetaminophen and Edaravone, and their binary mixtures: experimental and predicted values using traditional and novel Van Laar-based models.* Ecotoxicology, 2024. **33**(7): p. 722-736.

48. Drzymała, J. and J. Kalka, *Ecotoxic interactions between pharmaceuticals in mixtures: Diclofenac and sulfamethoxazole.* Chemosphere, 2020. **259**: p. 127407.