Measurement and prediction of the speed of sound of biodiesel fuels

Samuel V.D. Freitas, Márcio L.L. Paredes, Jean-Luc Daridon, Álvaro S. Lima, João A.P. Coutinho

CICECO, Chemistry Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
Programa de Pós, Graduação em Engenharia Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, Brazil
Laboratoire des Fluides Complexes, Université de Pau, BP 1155, 64013 Pau Cedex, France
Universidade Tiradentes, Av. Murilo Dantas 300, Farolândia, Aracaju, SE, Brazil

Highlights

- New data on speed of sound is reported for fatty acid methyl esters.
- New data on speed of sound is reported for biodiesel fuels.
- A predictive model based on linear mixing rule is proposed.
- A successful extension of the model for high pressures is presented.

Abstract

Speed of sound is an important fuel thermophysical property that directly characterizes the fuel injection and the NOx emissions in diesel engines especially for injectors activated with pressure. Nevertheless, the experimental data of speed of sound for biodiesel fuels are very scarce in the literature. Thereby, this work aims at measuring the speed of sound for biodiesels fuels and evaluating some predictive models to estimate the speed of sound from the composition of fatty acid methyl esters in the biodiesel.

For that purpose the measurement of speeds of sound for three fatty acid methyl esters and ten biodiesel fuels at atmospheric pressure and temperatures from 288.15 to 343.15 K was done. The ability of two versions of Auerbach’s relation, and the ideal mixture mixing rule to describe the speed of sound of biodiesels was evaluated. The results evinced that, with the exception to the original version of Auerbach’s relation, the other models studied provide a good estimate of the experimental data. The modified Auerbach’s relation displays an overall average relative deviation of 1.64%, and the ideal mixture mixing rules predict the biodiesel speed of sound with only 0.37% of overall deviation. Moreover, the dependency of speed of sound on pressure was also correlated with a linear equation, presenting only an overall deviation of 0.56%. These models can thus be a good tool to estimate the speeds of sound using only information about the biodiesel composition.

1. Introduction

Current researches on fuels have highlighted oftentimes the potential of biodiesel fuels as an alternative to petrodiesel. Whence, in fact, there is an increasing growth of public interest in using biodiesel fuels, especially in countries without fossil resources where these fuels can be a support for domestic economic development and energy sustainability. This trend stems basically from the premise that biodiesel fuels offer many benefits such as renewability (i.e., produced from vegetable oils, animal fats and recycled greases), biodegradability, non-toxicity, lower emissions of greenhouse gases, total miscibility with petrodiesel and especially compatibility with modern diesel engines [1,2].

The combustion of biodiesel fuels, however, can produce higher emissions of nitrogen oxides (NOx) in comparison with that of petrodiesel. For example, blends of B20 (i.e., 20 vol.% biodiesel with 80 vol.% petrodiesel) increase NOx emissions by 2–4% while B100 by as much 10%. [3] These emissions are prejudicial to the environment as they form smog, destroy the ozone layer, form nitric acid and irritate the eyes, throat and respiratory system. Nitrogen dioxide (NO2), and nitrous oxide (N2O) are about 250 times more threatening to global warming than CO2 at the same concentration [4–6].

Many approaches have been considered to reduce the NOx emissions. While some works suggested the use of Exhaust Gas Recirculation with biodiesel [3], others focused on the influences...
of injection and combustion parameters in NO\textsubscript{x} emissions such as the injection rate, injection timing, injection duration, injection pressure, start of combustion, in-cylinder gas pressure and temperature and heat release rate [7]. Anyway the dissimilar composition of fuels reflects the differences in physical properties like density, bulk modulus, heat capacity and speed of sound that later affect both the quality of fuel injection system and the diesel engine combustion [2,8–11]. Bio diesel fuels have higher values of density, viscosity, speed of sound, isentropic bulk modulus, cetane number and vapor pressure but lower heating values [8]. Although a higher cetane number would imply a shortened ignition delay period, resulting in relatively reduced NO\textsubscript{x} formation [12], a higher isentropic bulk modulus and higher speed of sound would cause an earlier injection of fuel, increasing the emissions of NO\textsubscript{x}, namely for injectors activated with pressure [10,13,14]. Anyway, the magnitude of these properties is influenced by the structure of the fatty acid ester component that compose biodiesel fuels such as chain length, branching and level of unsaturation [2]. Thus the knowledge of the relationship between the biodiesel properties and its composition in fatty acid methyl esters (FAME) is of great importance. In previous works we have reported new data and proposed predictive methodologies for the description of densities at low and high pressure [15], viscosities [16] and surface tensions [17]. Unfortunately there are only few works on the speed of sound of biodiesel fuels, and even less on the prediction of this property based on the composition of FAME. Ott et al. [18] measured the speed of sound as a function of temperature at 83 kPa for five pure methyl esters and later [19] they reported data for two B100 commercial fuels at 83 kPa. Tat et al. [11] correlated the speed of sound of methyl soyate and ethyl soyate with pressure at 21 °C. Gouw et al. [20] reported the ultrasonic sound velocity of methyl esters at 20 and 40 °C, while Tat and Van Gerpen [13] provided correlated data of the speed of sound for some biodiesel fuels and pure esters at temperatures from 20 °C to 100 °C and pressures from atmospheric to 34.5 MPa. These informations, however, still do not provide an approach for estimating the speed of sound of a biodiesel fuel from its composition.

This work aims to fill this gap by providing the experimental data of speed of sound for three pure methyl esters and ten biodiesel fuels at atmospheric pressure and temperatures from 288.15 to 343.15 K, and then evaluating the predictive ability of Auerbach’s relation, and ideal mixture mixing rules for describing the experimental data of biodiesel fuels based on the composition of FAME. An extension of the model to high pressures based on literature data is also attempted.

2. Experimental details

2.1. Biodiesel samples synthesis

The three methyl esters here studied were Methyl Laurate (with 97% of purity from Fluka), Methyl Myristate (with 98% of purity from SAFC) and Methyl Oleate (with 99% from Aldrich). Ten biodiesel fuels were studied: Soy A and GP (Soybean + Rapeseed) were obtained from Portuguese biodiesel producers while the other eight biodiesel samples were synthesized at our laboratory, as described in a previous work [15], by the transesterification reaction of the following vegetable oils with methanol. These are Soybean (S), Rapeseed (R) and Palm (P), and their respective binary and ternary mixtures: Soybean + Rapeseed (SR), Rapeseed + Palm (RP), Soybean + Palm (SP), and Soybean + Rapeseed + Palm (SRP) and Sunflower (SF).

Detailed compositions of these biodiesels are reported in Table 1. These data were acquired using a Capillary GC of Varian CP-3800 with a FID in a split injection system with a select biodiesel for FAME column (30 m × 0.32 mm × 0.25 μm). The column temperature was set at 120 °C and then programmed to increase up to 250 °C at 4 °C/min. The detector and injector were set at 250°C. The carrier gas was helium with a flow rate of 2 mL/min. [15].

2.2. Measurement of speed of sound

The ultrasonic pulse echo technique was used to measure the speed of sound of biodiesel fuels from 278.15 to 373.15 K at atmospheric pressure using the Anton Paar DSA 5000 density and sound velocity analyzer. This instrument is equipped with a density cell and a speed of sound cell combining the known oscillating U-tube method with a highly accurate measurement of speed of sound. It was calibrated against triple-distilled fresh water and air at atmospheric pressure. The calibration was accepted if the measurements were estimated to be within ±2.10⁻¹⁰ kg m⁻³ and ±0.01 m/s of the reference values. The measurements were obtained in duplicates, and the standard experimental uncertainty was obtained by dividing the modulus of the repeatability differences by the square of two. The value obtained was 0.23 m/s for 142 repetition points. [21].

3. Models for speed of sound

The description of speed of sound for biodiesel fuels and methyl esters was done by using the Auerbach’s relation, an approach previously used with success for ionic liquids [22], alkyl alkanotes and alkyl amines [6,23], and metallic liquids [24], and alternatively using a linear mixing rule.

3.1. Auerbach’s model

The Auerbach’s model [22,25] is represented by Eq. (1), where \(u \) is the speed of sound in m/s, \(\gamma \) is the surface tension in N m⁻¹ and \(\rho \) is the density in kg m⁻³. Since this equation requires the prior knowledge of densities and surface tensions, this work uses the data reported in our previous works [15,17].

\[
\begin{align*}
\frac{u}{\gamma} & = \left(\frac{6.33 \times 10^{-10}}{\rho} \right)^{\frac{1}{3}} \\
\Rightarrow u & = \left(\frac{\gamma}{6.33 \times 10^{-10}} \right)^{\frac{1}{3}} \rho
\end{align*}
\]

This work also considered a modified version of Auerbach’s model, in order to achieve a better description of the experimental speed of sound data for biodiesel fuels, by relaxing the value of the constant \(cI \) of the following equation:

\[
\begin{align*}
\frac{u}{\gamma} & = \left(\frac{6.33 \times 10^{-10}}{\rho} \right)^{\frac{1}{3}} \rho^{cI} \\
\Rightarrow u & = \left(\frac{\gamma}{6.33 \times 10^{-10}} \right)^{\frac{1}{3}} \rho^{cI + 1}
\end{align*}
\]

3.2. Ideal mixture mixing rules

As biodiesel fuels are a mixture of FAME of similar molecular weight, their speeds of sound can be estimated using a mixing rule assuming an ideal mixture behavior. This approach, described by Eq. (3), will be here used to describe the speed of sound of bидеisels, where \(u_{BD} \) is the speed of sound of biodiesel in m/s, \(x_i \) is the molar composition and \(u_i \) is the speed of sound of individual FAME in m/s.

\[
\begin{align*}
\frac{u_{BD}}{\gamma} & = \sum_{i} x_i \frac{u_i}{\gamma} \\
\Rightarrow u_{BD} & = \sum_{i} x_i u_i
\end{align*}
\]

Due to lack of experimental data of speed of sound for some minoritary FAME compounds, such as C10:0, C16:1, C20:0, C20:1, C22:0, C22:1 and C24:0, to predict the speed of sound of biodiesel fuels containing these compounds, in this work the
pseudo-component concept was adopted by adding C10:0 to C12:0, C16:1 to C16:0 and C20:0, C22:0 and C24:0 to C18:0 and C20:1 to C18:1 with 9.13% and 1.64% of the original Auerbach’s equation and the modified Auerbach’s model for both set of compounds can be seen separately in Figs. 2a and b where the deviation between the predicted and experimental data is within ±4%. A deficient temperature dependency of the model is highlighted in these figures. The average relative deviations (ARD) for the ten biodiesels here studied and eleven other biodiesels previously reported in the literature are presented in Table 4 for the various models investigated. Here it can be seen that the ideal mixture mixing rules is the most appropriate model for describing the speeds of sound for biodiesel fuels, presenting only an OARD of 0.37% for the training set and of 1.42% for the validation set. A value for c_1 of 0.987 was obtained that provided experimental data displays very similar pressures dependencies of sound measured in this work. The relative deviations are shown in Fig. 1, where it is seen that a very good agreement is obtained with the deviations within ±1% of literature data. Very small differences in the speed of sound are observed between the various biodiesels studied. Both the magnitude of the speed of sound and its temperature dependency vary less than 1% between the fluids, unlike what was previously observed for other properties [9,17,21]. In spite of the similarities it can be observed, nevertheless, that the increase in concentration of the saturation level of the compounds decreases the speed of sound.

The behavior of predictions of speed of sound for biodiesel fuels at high pressures, this work used the experimental data of speed of sound reported by Tat and Van Gerpen [13] to develop a correlation. The experimental data displays very similar pressures dependencies here measured were compared to those reported in the literature. The relative deviations are shown in Fig. 1, where it is seen that a very good agreement is obtained with the deviations within ±1% of literature data. Very small differences in the speed of sound are observed between the various biodiesels studied. Both the magnitude of the speed of sound and its temperature dependency vary less than 1% between the fluids, unlike what was previously observed for other properties [9,17,21]. In spite of the similarities it can be observed, nevertheless, that the increase in concentration of the saturation level of the compounds decreases the speed of sound.

The relative deviations are shown in Fig. 1, where it is seen that a very good agreement is obtained with the deviations within ±1% of literature data. Very small differences in the speed of sound are observed between the various biodiesels studied. Both the magnitude of the speed of sound and its temperature dependency vary less than 1% between the fluids, unlike what was previously observed for other properties [9,17,21]. In spite of the similarities it can be observed, nevertheless, that the increase in concentration of the saturation level of the compounds decreases the speed of sound.

The behavior of predictions of speed of sound for biodiesel fuels at high pressures, this work used the experimental data of speed of sound reported by Tat and Van Gerpen [13] to develop a correlation. The experimental data displays very similar pressures dependencies here measured were compared to those reported in the literature. The relative deviations are shown in Fig. 1, where it is seen that a very good agreement is obtained with the deviations within ±1% of literature data. Very small differences in the speed of sound are observed between the various biodiesels studied. Both the magnitude of the speed of sound and its temperature dependency vary less than 1% between the fluids, unlike what was previously observed for other properties [9,17,21]. In spite of the similarities it can be observed, nevertheless, that the increase in concentration of the saturation level of the compounds decreases the speed of sound.

The relative deviations are shown in Fig. 1, where it is seen that a very good agreement is obtained with the deviations within ±1% of literature data. Very small differences in the speed of sound are observed between the various biodiesels studied. Both the magnitude of the speed of sound and its temperature dependency vary less than 1% between the fluids, unlike what was previously observed for other properties [9,17,21]. In spite of the similarities it can be observed, nevertheless, that the increase in concentration of the saturation level of the compounds decreases the speed of sound.

The behavior of predictions of speed of sound for biodiesel fuels at high pressures, this work used the experimental data of speed of sound reported by Tat and Van Gerpen [13] to develop a correlation. The experimental data displays very similar pressures dependencies here measured were compared to those reported in the literature. The relative deviations are shown in Fig. 1, where it is seen that a very good agreement is obtained with the deviations within ±1% of literature data. Very small differences in the speed of sound are observed between the various biodiesels studied. Both the magnitude of the speed of sound and its temperature dependency vary less than 1% between the fluids, unlike what was previously observed for other properties [9,17,21]. In spite of the similarities it can be observed, nevertheless, that the increase in concentration of the saturation level of the compounds decreases the speed of sound.

The relative deviations are shown in Fig. 1, where it is seen that a very good agreement is obtained with the deviations within ±1% of literature data. Very small differences in the speed of sound are observed between the various biodiesels studied. Both the magnitude of the speed of sound and its temperature dependency vary less than 1% between the fluids, unlike what was previously observed for other properties [9,17,21]. In spite of the similarities it can be observed, nevertheless, that the increase in concentration of the saturation level of the compounds decreases the speed of sound.

The behavior of predictions of speed of sound for biodiesel fuels at high pressures, this work used the experimental data of speed of sound reported by Tat and Van Gerpen [13] to develop a correlation. The experimental data displays very similar pressures dependencies here measured were compared to those reported in the literature. The relative deviations are shown in Fig. 1, where it is seen that a very good agreement is obtained with the deviations within ±1% of literature data. Very small differences in the speed of sound are observed between the various biodiesels studied. Both the magnitude of the speed of sound and its temperature dependency vary less than 1% between the fluids, unlike what was previously observed for other properties [9,17,21]. In spite of the similarities it can be observed, nevertheless, that the increase in concentration of the saturation level of the compounds decreases the speed of sound.

The behavior of predictions of speed of sound for biodiesel fuels at high pressures, this work used the experimental data of speed of sound reported by Tat and Van Gerpen [13] to develop a correlation. The experimental data displays very similar pressures dependencies here measured were compared to those reported in the literature. The relative deviations are shown in Fig. 1, where it is seen that a very good agreement is obtained with the deviations within ±1% of literature data. Very small differences in the speed of sound are observed between the various biodiesels studied. Both the magnitude of the speed of sound and its temperature dependency vary less than 1% between the fluids, unlike what was previously observed for other properties [9,17,21]. In spite of the similarities it can be observed, nevertheless, that the increase in concentration of the saturation level of the compounds decreases the speed of sound.
for the speeds of sound observed for the pure FAME’s and for the biodiesel fuels, that are linear in the range of pressures (0–35 MPa) studied by Tat and Van Gerpen [13]. For the same pressure range, a linear behavior is also observed for the experimental data reported by Payri et al. [26] It should thus be possible to describe the pressure dependency of the speed of sound up to 40 MPa by

\[u = u_0 + aP \]

Table 3
Experimental speed of sound, in m/s, for methyl biodiesel.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>S</th>
<th>R</th>
<th>P</th>
<th>SR</th>
<th>RP</th>
<th>SP</th>
<th>SRP</th>
<th>SF</th>
<th>GP</th>
<th>Soy A</th>
</tr>
</thead>
<tbody>
<tr>
<td>288.15</td>
<td>1430.23</td>
<td>1430.79</td>
<td>1420.04</td>
<td>1430.66</td>
<td>1424.52</td>
<td>1424.92</td>
<td>1426.90</td>
<td>1432.34</td>
<td>1428.88</td>
<td>1428.53</td>
</tr>
<tr>
<td>293.15</td>
<td>1412.39</td>
<td>1412.26</td>
<td>1401.86</td>
<td>1412.77</td>
<td>1406.55</td>
<td>1406.86</td>
<td>1408.97</td>
<td>1414.56</td>
<td>1410.97</td>
<td>1410.73</td>
</tr>
<tr>
<td>298.15</td>
<td>1394.54</td>
<td>1394.11</td>
<td>1383.88</td>
<td>1394.95</td>
<td>1388.65</td>
<td>1388.94</td>
<td>1391.11</td>
<td>1396.53</td>
<td>1393.10</td>
<td>1392.90</td>
</tr>
<tr>
<td>303.15</td>
<td>1376.86</td>
<td>1376.22</td>
<td>1366.08</td>
<td>1377.27</td>
<td>1370.89</td>
<td>1371.17</td>
<td>1373.36</td>
<td>1378.54</td>
<td>1375.39</td>
<td>1375.17</td>
</tr>
<tr>
<td>308.15</td>
<td>1359.20</td>
<td>1358.40</td>
<td>1348.38</td>
<td>1353.34</td>
<td>1353.61</td>
<td>1355.80</td>
<td>1355.80</td>
<td>1360.74</td>
<td>1357.86</td>
<td>1357.63</td>
</tr>
<tr>
<td>313.15</td>
<td>1341.80</td>
<td>1340.88</td>
<td>1331.14</td>
<td>1335.01</td>
<td>1336.17</td>
<td>1338.37</td>
<td>1340.44</td>
<td>1340.44</td>
<td>1340.44</td>
<td>1340.16</td>
</tr>
<tr>
<td>318.15</td>
<td>1324.55</td>
<td>1323.55</td>
<td>1313.88</td>
<td>1318.60</td>
<td>1318.86</td>
<td>1321.11</td>
<td>1325.80</td>
<td>1323.21</td>
<td>1322.90</td>
<td>1322.60</td>
</tr>
<tr>
<td>323.15</td>
<td>1307.37</td>
<td>1306.31</td>
<td>1296.69</td>
<td>1301.48</td>
<td>1301.73</td>
<td>1304.20</td>
<td>1308.63</td>
<td>1306.07</td>
<td>1305.75</td>
<td>1305.45</td>
</tr>
<tr>
<td>328.15</td>
<td>1290.35</td>
<td>1289.26</td>
<td>1279.72</td>
<td>1284.49</td>
<td>1284.74</td>
<td>1288.00</td>
<td>1291.53</td>
<td>1289.12</td>
<td>1288.79</td>
<td>1288.50</td>
</tr>
<tr>
<td>333.15</td>
<td>1273.43</td>
<td>1272.30</td>
<td>1262.94</td>
<td>1267.62</td>
<td>1267.86</td>
<td>1271.13</td>
<td>1274.60</td>
<td>1272.26</td>
<td>1271.91</td>
<td>1271.62</td>
</tr>
<tr>
<td>338.15</td>
<td>1256.69</td>
<td>1255.59</td>
<td>1246.18</td>
<td>1250.85</td>
<td>1251.09</td>
<td>1254.40</td>
<td>1257.76</td>
<td>1255.52</td>
<td>1255.17</td>
<td>1254.83</td>
</tr>
<tr>
<td>343.15</td>
<td>1240.02</td>
<td>1239.05</td>
<td>1229.66</td>
<td>1234.28</td>
<td>1234.51</td>
<td>1237.84</td>
<td>1241.05</td>
<td>1238.99</td>
<td>1238.53</td>
<td>1238.10</td>
</tr>
</tbody>
</table>

Fig. 1. Relative deviations of the speed of sound of three methyl esters here studied ○ Methyl Laurate, △ Methyl Myristate and ◆ Methyl Oleate [13,18,20].

Table 4
Average relative deviations (ARD) of speed of sound for biodiesel fuels using the models here studied.

<table>
<thead>
<tr>
<th>Compound</th>
<th>ARD, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Auerbach</td>
</tr>
<tr>
<td></td>
<td>original</td>
</tr>
<tr>
<td>BD–A [19]</td>
<td>8.13</td>
</tr>
<tr>
<td>BD–B [19]</td>
<td>8.40</td>
</tr>
<tr>
<td>BD–JC [1]</td>
<td>7.51</td>
</tr>
<tr>
<td>Methyl Soy ester [13]</td>
<td>7.80</td>
</tr>
<tr>
<td>Methyl Canola [13]</td>
<td>8.22</td>
</tr>
<tr>
<td>Methyl Tallow [13]</td>
<td>8.02</td>
</tr>
<tr>
<td>Methyl Lard [13]</td>
<td>8.49</td>
</tr>
<tr>
<td>Methyl oxidized soy [13]</td>
<td>11.35</td>
</tr>
<tr>
<td>Methyl hydrogenated soy [13]</td>
<td>7.85</td>
</tr>
<tr>
<td>S</td>
<td>9.28</td>
</tr>
<tr>
<td>Soy A</td>
<td>8.00</td>
</tr>
<tr>
<td>R</td>
<td>10.53</td>
</tr>
<tr>
<td>P</td>
<td>11.70</td>
</tr>
<tr>
<td>SF</td>
<td>9.84</td>
</tr>
<tr>
<td>SP</td>
<td>10.48</td>
</tr>
<tr>
<td>SR</td>
<td>8.95</td>
</tr>
<tr>
<td>PR</td>
<td>11.33</td>
</tr>
<tr>
<td>SRP</td>
<td>9.86</td>
</tr>
<tr>
<td>GP</td>
<td>9.84</td>
</tr>
<tr>
<td>NIST SRM 2772 B100 [27]</td>
<td>7.91</td>
</tr>
<tr>
<td>NIST SRM 2773 B100 [27]</td>
<td>8.21</td>
</tr>
<tr>
<td>OARD, %</td>
<td>9.28</td>
</tr>
</tbody>
</table>

Where BD–A and BD–B are two types of commercial B100 and BD–JC is the Jatropha curcas Biodiesel.

Fig. 2a. Predicted vs. experimental speed of sound of the training set for modified Auerbach’s model. ■ Methyl palmitate, ● Methyl stearate, ▲ Methyl oleate, ○ Methyl linoleate, △ S, ◆ SR, ◆ SRP and ◆ ±4%.

Fig. 2b. Predicted vs. experimental speed of sound of the validation set for the modified Auerbach’s model. ○ Methyl Laurate, △ Methyl Myristate, ▲ Methyl Oleate, □ Soy A, ◆ R, ● P, ▲ SF, ○ GP, ▼ SP and ◆ ±4%.

for the speeds of sound observed for the pure FAME’s and for the biodiesel fuels, that are linear in the range of pressures (0–35 MPa) studied by Tat and Van Gerpen [13]. For the same pressure range, a linear behavior is also observed for the experimental data reported by Payri et al. [26] It should thus be possible to describe the pressure dependency of the speed of sound up to 40 MPa by

\[u = u_0 + aP \]

(6)
Where u is the speed of sound in m/s, u_0 is the speed of sound at atmospheric pressure, a is the pressure gradient and P is the pressure in MPa.

To develop a high pressure correlation for the speed of sound of biodiesel fuels the six FAMEs, C12:0, C16:0, C18:0, C18:1, C18:2 and C18:3 reported by Tat and Van Gerpen, [13], were used as the training set while the other six biodiesels as the validation set. After fitting the Eq. (6) to the experimental data of the training set while the other six biodiesels as the validation set, the numerical value of the pressure gradient was obtained as detailed in Table 5. The validity of these correlations is limited to the pressures below 40 MPa and should not be extrapolated to higher pressures. As shown by Payri et al. [26] for higher pressures the pressure dependency of the speed of sound is no longer linear. Unfortunately at present the data available precludes the development of a correlation for higher pressures.

5. Conclusions

The experimental data of speed of sound for three pure methyl esters and ten biodiesel fuels were measured at temperatures from 288 to 343 K and at atmospheric pressure. These data were then used, along with other literature data, to evaluate the capacity of two versions of Auerbach's relation, and ideal mixture mixing rules to predict the speed of sound of biodiesel fuels from the knowledge of their composition. For all biodiesel studied, the overall average relative deviation (OARD) value obtained for these models were 1.64 and 0.37% respectively for the modified Auerbach model and ideal mixture mixing rules. A correlation for estimating the speed of sounds for biodiesels at high pressures was also developed. It is valid up to 40 MPa and provides an OARD of 0.56% for seven biodiesels tested. Therefore when the measurement of speed of sound is impractical for any biodiesel, these models can be a useful tool for predicting the speed of sound in a wide range of temperatures and pressures provided that the composition of FAME is known.

Acknowledgments

Samuel V. D. Freitas acknowledges funding from Fundação para a Ciência e a Tecnologia through his Ph.D. Grant SFRH/BD/51476/2011, Fundação Oriente and the University of Aveiro.

References